2 research outputs found

    On the application of forking nodes to product-form queueing networks

    No full text
    We define a 'forking node' as a service centre with one input feeding two outputs (each served by its own queue) under the control of an internal path-selection (PS) policy. We assume that both outputs lead to paths through which a packet reaches its final destination. However, the mean downstream delays on the two paths may be different and the PS policy should favour the path with the lower downstream delay. Using simulation, we compare the performance of this system under a variety of random, deterministic, state-dependent PS policies, including threshold-based and join-shortest-queue with bias (JSQ + b). We show that JSQ + b has better performance than the other alternatives. Moreover, if the input process to the forking node is Poisson, standard time series analysis techniques show that its two outputs are very close to being independent Poisson processes. Thus, if we find an accurate and efficient 'offline' analytical performance model for JSQ + b forking node, we can extend the applicability of product-form queueing networks to include such forking nodes. For this reason, we present several ways of modelling the performance of a JSQ + b node, using bounds, and compare their results on example networks. We establish a closed-form expression relating the bias b and the delays of the downstream paths. Copyright (c) 2007 , Ltd
    corecore