5,303 research outputs found

    Fundamental limitations on communication channels with noisy feedback: information flow, capacity and bounds

    Get PDF
    Since the success of obtaining the capacity (i.e. the maximal achievable transmission rate under which the message can be recovered with arbitrarily small probability of error) for non-feedback point-to-point communication channels by C. Shannon (in 1948), Information Theory has been proved to be a powerful tool to derive fundamental limitations in communication systems. During the last decade, motivated by the emerging of networked systems, information theorists have turned lots of their attention to communication channels with feedback (through another channel from receiver to transmitter). Under the assumption that the feedback channel is noiseless, a large body of notable results have been derived, although much work still needs to be done. However, when this ideal assumption is removed, i.e., the feedback channel is noisy, only few valuable results can be found in the literature and many challenging problems are still open. This thesis aims to address some of these long-standing noisy feedback problems, with concentration on the channel capacity. First of all, we analyze the fundamental information flow in noisy feedback channels. We introduce a new notion, the residual directed information, in order to characterize the noisy feedback channel capacity for which the standard directed information can not be used. As an illustration, finite-alphabet noisy feedback channels have been studied in details. Next, we provide an information flow decomposition equality which serves as a foundation of other novel results in this thesis. With the result of information flow decomposition in hand, we next investigate time-varying Gaussian channels with additive Gaussian noise feedback. Following the notable Cover-Pombra results in 1989, we define the n-block noisy feedback capacity and derive a pair of n-block upper and lower bounds on the n-block noisy feedback capacity. These bounds can be obtained by efficiently solving convex optimization problems. Under the assumption of stationarity on the additive Gaussian noises, we show that the limits of these n-block bounds can be characterized in a power spectral optimization form. In addition, two computable lower bounds are derived for the Shannon capacity. Next, we consider a class of channels where feedback could not increase the capacity and thus the noisy feedback capacity equals to the non-feedback capacity. We derive a necessary condition (characterized by the directed information) for the capacity-achieving channel codes. The condition implies that using noisy feedback is detrimental to achievable rate, i.e, the capacity can not be achieved by using noisy feedback. Finally, we introduce a new framework of communication channels with noisy feedback where the feedback information received by the transmitter is also available to the decoder with some finite delays. We investigate the capacity and linear coding schemes for this extended noisy feedback channels. To summarize, this thesis firstly provides a foundation (i.e. information flow analysis) for analyzing communications channels with noisy feedback. In light of this analysis, we next present a sequence of novel results, e.g. channel coding theorem, capacity bounds, etc., which result in a significant step forward to address the long-standing noisy feedback problem

    The Wiretap Channel with Feedback: Encryption over the Channel

    Full text link
    In this work, the critical role of noisy feedback in enhancing the secrecy capacity of the wiretap channel is established. Unlike previous works, where a noiseless public discussion channel is used for feedback, the feed-forward and feedback signals share the same noisy channel in the present model. Quite interestingly, this noisy feedback model is shown to be more advantageous in the current setting. More specifically, the discrete memoryless modulo-additive channel with a full-duplex destination node is considered first, and it is shown that the judicious use of feedback increases the perfect secrecy capacity to the capacity of the source-destination channel in the absence of the wiretapper. In the achievability scheme, the feedback signal corresponds to a private key, known only to the destination. In the half-duplex scheme, a novel feedback technique that always achieves a positive perfect secrecy rate (even when the source-wiretapper channel is less noisy than the source-destination channel) is proposed. These results hinge on the modulo-additive property of the channel, which is exploited by the destination to perform encryption over the channel without revealing its key to the source. Finally, this scheme is extended to the continuous real valued modulo-Λ\Lambda channel where it is shown that the perfect secrecy capacity with feedback is also equal to the capacity in the absence of the wiretapper.Comment: Submitted to IEEE Transactions on Information Theor

    Communicating over Filter-and-Forward Relay Networks with Channel Output Feedback

    Full text link
    Relay networks aid in increasing the rate of communication from source to destination. However, the capacity of even a three-terminal relay channel is an open problem. In this work, we propose a new lower bound for the capacity of the three-terminal relay channel with destination-to-source feedback in the presence of correlated noise. Our lower bound improves on the existing bounds in the literature. We then extend our lower bound to general relay network configurations using an arbitrary number of filter-and-forward relay nodes. Such network configurations are common in many multi-hop communication systems where the intermediate nodes can only perform minimal processing due to limited computational power. Simulation results show that significant improvements in the achievable rate can be obtained through our approach. We next derive a coding strategy (optimized using post processed signal-to-noise ratio as a criterion) for the three-terminal relay channel with noisy channel output feedback for two transmissions. This coding scheme can be used in conjunction with open-loop codes for applications like automatic repeat request (ARQ) or hybrid-ARQ.Comment: 15 pages, 8 figures, to appear in IEEE Transactions on Signal Processin

    Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    Full text link
    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channel. It is shown that Kramer's code for this channel, which is known to be sum rate optimal in the class of generalized linear feedback codes, can be obtained by solving a linear quadratic Gaussian control problem.Comment: Submitted to IEEE Transactions on Automatic Contro
    • …
    corecore