3,110 research outputs found

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat

    Moments in graphs

    Full text link
    Let GG be a connected graph with vertex set VV and a {\em weight function} ρ\rho that assigns a nonnegative number to each of its vertices. Then, the {\em ρ\rho-moment} of GG at vertex uu is defined to be M_G^{\rho}(u)=\sum_{v\in V} \rho(v)\dist (u,v) , where \dist(\cdot,\cdot) stands for the distance function. Adding up all these numbers, we obtain the {\em ρ\rho-moment of GG}: M_G^{\rho}=\sum_{u\in V}M_G^{\rho}(u)=1/2\sum_{u,v\in V}\dist(u,v)[\rho(u)+\rho(v)]. This parameter generalizes, or it is closely related to, some well-known graph invariants, such as the {\em Wiener index} W(G)W(G), when ρ(u)=1/2\rho(u)=1/2 for every uVu\in V, and the {\em degree distance} D(G)D'(G), obtained when ρ(u)=δ(u)\rho(u)=\delta(u), the degree of vertex uu. In this paper we derive some exact formulas for computing the ρ\rho-moment of a graph obtained by a general operation called graft product, which can be seen as a generalization of the hierarchical product, in terms of the corresponding ρ\rho-moments of its factors. As a consequence, we provide a method for obtaining nonisomorphic graphs with the same ρ\rho-moment for every ρ\rho (and hence with equal mean distance, Wiener index, degree distance, etc.). In the case when the factors are trees and/or cycles, techniques from linear algebra allow us to give formulas for the degree distance of their product

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure
    corecore