2,893 research outputs found

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    A Method to determine Partial Weight Enumerator for Linear Block Codes

    Get PDF
    In this paper we present a fast and efficient method to find partial weight enumerator (PWE) for binary linear block codes by using the error impulse technique and Monte Carlo method. This PWE can be used to compute an upper bound of the error probability for the soft decision maximum likelihood decoder (MLD). As application of this method we give partial weight enumerators and analytical performances of the BCH(130,66), BCH(103,47) and BCH(111,55) shortened codes; the first code is obtained by shortening the binary primitive BCH (255,191,17) code and the two other codes are obtained by shortening the binary primitive BCH(127,71,19) code. The weight distributions of these three codes are unknown at our knowledge.Comment: Computer Engineering and Intelligent Systems Vol 3, No.11, 201

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    A STUDY OF LINEAR ERROR CORRECTING CODES

    Get PDF
    Since Shannon's ground-breaking work in 1948, there have been two main development streams of channel coding in approaching the limit of communication channels, namely classical coding theory which aims at designing codes with large minimum Hamming distance and probabilistic coding which places the emphasis on low complexity probabilistic decoding using long codes built from simple constituent codes. This work presents some further investigations in these two channel coding development streams. Low-density parity-check (LDPC) codes form a class of capacity-approaching codes with sparse parity-check matrix and low-complexity decoder Two novel methods of constructing algebraic binary LDPC codes are presented. These methods are based on the theory of cyclotomic cosets, idempotents and Mattson-Solomon polynomials, and are complementary to each other. The two methods generate in addition to some new cyclic iteratively decodable codes, the well-known Euclidean and projective geometry codes. Their extension to non binary fields is shown to be straightforward. These algebraic cyclic LDPC codes, for short block lengths, converge considerably well under iterative decoding. It is also shown that for some of these codes, maximum likelihood performance may be achieved by a modified belief propagation decoder which uses a different subset of 7^ codewords of the dual code for each iteration. Following a property of the revolving-door combination generator, multi-threaded minimum Hamming distance computation algorithms are developed. Using these algorithms, the previously unknown, minimum Hamming distance of the quadratic residue code for prime 199 has been evaluated. In addition, the highest minimum Hamming distance attainable by all binary cyclic codes of odd lengths from 129 to 189 has been determined, and as many as 901 new binary linear codes which have higher minimum Hamming distance than the previously considered best known linear code have been found. It is shown that by exploiting the structure of circulant matrices, the number of codewords required, to compute the minimum Hamming distance and the number of codewords of a given Hamming weight of binary double-circulant codes based on primes, may be reduced. A means of independently verifying the exhaustively computed number of codewords of a given Hamming weight of these double-circulant codes is developed and in coiyunction with this, it is proved that some published results are incorrect and the correct weight spectra are presented. Moreover, it is shown that it is possible to estimate the minimum Hamming distance of this family of prime-based double-circulant codes. It is shown that linear codes may be efficiently decoded using the incremental correlation Dorsch algorithm. By extending this algorithm, a list decoder is derived and a novel, CRC-less error detection mechanism that offers much better throughput and performance than the conventional ORG scheme is described. Using the same method it is shown that the performance of conventional CRC scheme may be considerably enhanced. Error detection is an integral part of an incremental redundancy communications system and it is shown that sequences of good error correction codes, suitable for use in incremental redundancy communications systems may be obtained using the Constructions X and XX. Examples are given and their performances presented in comparison to conventional CRC schemes

    p-Adic estimates of Hamming weights in Abelian codes over Galois rings

    Get PDF
    A generalization of McEliece's theorem on the p-adic valuation of Hamming weights of words in cyclic codes is proved in this paper by means of counting polynomial techniques introduced by Wilson along with a technique known as trace-averaging introduced here. The original theorem of McEliece concerned cyclic codes over prime fields. Delsarte and McEliece later extended this to Abelian codes over finite fields. Calderbank, Li, and Poonen extended McEliece's original theorem to cover cyclic codes over the rings /spl Zopf//sub 2//sup d/, Wilson strengthened their results and extended them to cyclic codes over /spl Zopf//sub p//sup d/, and Katz strengthened Wilson's results and extended them to Abelian codes over /spl Zopf//sub p//sup d/. It is natural to ask whether there is a single analogue of McEliece's theorem which correctly captures the behavior of codes over all finite fields and all rings of integers modulo prime powers. In this paper, this question is answered affirmatively: a single theorem for Abelian codes over Galois rings is presented. This theorem contains all previously mentioned results and more

    Efficient implementation of the Hardy-Ramanujan-Rademacher formula

    Full text link
    We describe how the Hardy-Ramanujan-Rademacher formula can be implemented to allow the partition function p(n)p(n) to be computed with softly optimal complexity O(n1/2+o(1))O(n^{1/2+o(1)}) and very little overhead. A new implementation based on these techniques achieves speedups in excess of a factor 500 over previously published software and has been used by the author to calculate p(1019)p(10^{19}), an exponent twice as large as in previously reported computations. We also investigate performance for multi-evaluation of p(n)p(n), where our implementation of the Hardy-Ramanujan-Rademacher formula becomes superior to power series methods on far denser sets of indices than previous implementations. As an application, we determine over 22 billion new congruences for the partition function, extending Weaver's tabulation of 76,065 congruences.Comment: updated version containing an unconditional complexity proof; accepted for publication in LMS Journal of Computation and Mathematic

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm
    • …
    corecore