2,964 research outputs found

    Quadratic Mean Field Games

    Full text link
    Mean field games were introduced independently by J-M. Lasry and P-L. Lions, and by M. Huang, R.P. Malham\'e and P. E. Caines, in order to bring a new approach to optimization problems with a large number of interacting agents. The description of such models split in two parts, one describing the evolution of the density of players in some parameter space, the other the value of a cost functional each player tries to minimize for himself, anticipating on the rational behavior of the others. Quadratic Mean Field Games form a particular class among these systems, in which the dynamics of each player is governed by a controlled Langevin equation with an associated cost functional quadratic in the control parameter. In such cases, there exists a deep relationship with the non-linear Schr\"odinger equation in imaginary time, connexion which lead to effective approximation schemes as well as a better understanding of the behavior of Mean Field Games. The aim of this paper is to serve as an introduction to Quadratic Mean Field Games and their connexion with the non-linear Schr\"odinger equation, providing to physicists a good entry point into this new and exciting field.Comment: 62 pages, 4 figure

    Two-scale homogenization of a stationary mean-field game

    Full text link
    In this paper, we characterize the asymptotic behavior of a first-order stationary mean-field game (MFG) with a logarithm coupling, a quadratic Hamiltonian, and a periodically oscillating potential. This study falls into the realm of the homogenization theory, and our main tool is the two-scale convergence. Using this convergence, we rigorously derive the two-scale homogenized and the homogenized MFG problems, which encode the so-called macroscopic or effective behavior of the original oscillating MFG. Moreover, we prove existence and uniqueness of the solution to these limit problems.Comment: 36 page
    • …
    corecore