5 research outputs found

    A Bi-Level Multi-Objective Approach for Web Service Design Defects Detection

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152453/1/JSS_WSBi_Level__Copy_fv.pd

    A Systematic Literature Review on Software Refactoring

    Full text link
    Due to the growing complexity of software systems, there has been a dramatic increase in research and industry demand on refactoring. Refactoring research nowadays addresses challenges beyond code transformation to include, but not limited to, scheduling the opportune time to carry refactoring, recommending specific refactoring activities, detecting refactoring opportunities and testing the correctness of applied refactoring. Very few studies focused on the challenges that practitioners face when refactoring software systems and what should be the current refactoring research focus from the developers’perspective and based on the current literature. Without such knowledge, tool builders invest in the wrong direction, and researchers miss many opportunities for improving the practice of refactoring. In this thesis, we collected papers from several publication sources and analyzed them to identify what do developers ask about refactoring and the relevant topics in the field We found that developers and researchers are asking about design patterns, design and user interface refactoring, web services, parallel programming, and mobile apps. We also identified what popular refactoring challenges are the most difficult and the current important topics and questions related to refactoring. Moreover, we discovered gaps between existing research on refactoring and the challenges developers face.Master of ScienceSoftware Engineering, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/154827/1/Jallal Elhazzat Final Thesis.pdfDescription of Jallal Elhazzat Final Thesis.pdf : Thesi

    Intelligent Web Services Architecture Evolution Via An Automated Learning-Based Refactoring Framework

    Full text link
    Architecture degradation can have fundamental impact on software quality and productivity, resulting in inability to support new features, increasing technical debt and leading to significant losses. While code-level refactoring is widely-studied and well supported by tools, architecture-level refactorings, such as repackaging to group related features into one component, or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web services, heavily depend on complex architectures to design and implement interface-level operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to the end-users. The objectives of this work are: (1) to advance our ability to support complex architecture refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to enable complex refactorings by learning from user feedback and creating reusable/personalized refactoring strategies to augment intelligent designers’ interaction that will guide low-level refactoring automation with high-level abstractions, and (3) to enable intelligent architecture evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts. We proposed various approaches and tools based on intelligent computational search techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an interactive refactoring framework that integrates refactoring path recommendation, design-level human abstraction, and code-level refactoring automation with user feedback using interactive mutli-objective search, and (c) automatically learning reusable and personalized refactoring strategies for Web services by abstracting recurring refactoring patterns from Web service releases. Based on empirical validations performed on both large open source and industrial services from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed approaches advance our understanding of the correlation and mutual impact between service antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the quality of services. The interactive refactoring framework enables, based on several controlled experiments, human-based, domain-specific abstraction and high-level design to guide automated code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy packages recurring refactoring activities into automatable units, improving refactoring path recommendation and further reducing time-consuming and error-prone human intervention.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/142810/1/Wang Final Dissertation.pdfDescription of Wang Final Dissertation.pdf : Dissertatio

    A User-aware Intelligent Refactoring for Discrete and Continuous Software Integration

    Full text link
    Successful software products evolve through a process of continual change. However, this process may weaken the design of the software and make it unnecessarily complex, leading to significantly reduced productivity and increased fault-proneness. Refactoring improves the software design while preserving overall functionality and behavior, and is an important technique in managing the growing complexity of software systems. Most of the existing work on software refactoring uses either an entirely manual or a fully automated approach. Manual refactoring is time-consuming, error-prone and unsuitable for large-scale, radical refactoring. Furthermore, fully automated refactoring yields a static list of refactorings which, when applied, leads to a new and often hard to comprehend design. In addition, it is challenging to merge these refactorings with other changes performed in parallel by developers. In this thesis, we propose a refactoring recommendation approach that dynamically adapts and interactively suggests refactorings to developers and takes their feedback into consideration. Our approach uses Non-dominated Sorting Genetic Algorithm (NSGAII) to find a set of good refactoring solutions that improve software quality while minimizing the deviation from the initial design. These refactoring solutions are then analyzed to extract interesting common features between them such as the frequently occurring refactorings in the best non-dominated solutions. We combined our interactive approach and unsupervised learning to reduce the developer’s interaction effort when refactoring a system. The unsupervised learning algorithm clusters the different trade-off solutions, called the Pareto front, to guide the developers in selecting their region of interests and reduce the number of refactoring options to explore. To reduce the interaction effort, we propose an approach to convert multi-objective search into a mono-objective one after interacting with the developer to identify a good refactoring solution based on their preferences. Since developers may want to focus on specific code locations, the ”Decision Space” is also important. Therefore, our interactive approach enables developers to pinpoint their preference simultaneously in the objective (quality metrics) and decision (code location) spaces. Due to an urgent need for refactoring tools that can support continuous integration and some recent development processes such as DevOps that are based on rapid releases, we propose, for the first time, an intelligent software refactoring bot, called RefBot. Our bot continuously monitors the software repository and find the best sequence of refactorings to fix the quality issues in Continous Integration/Continous Development (CI/CD) environments as a set of pull-requests generated after mining previous code changes to understand the profile of developers. We quantitatively and qualitatively evaluated the performance and effectiveness of our proposed approaches via a set of studies conducted with experienced developers who used our tools on both open source and industry projects.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/154775/1/Vahid Alizadeh Final Dissertation.pdfDescription of Vahid Alizadeh Final Dissertation.pdf : Dissertatio

    Explainable, Security-Aware and Dependency-Aware Framework for Intelligent Software Refactoring

    Full text link
    As software systems continue to grow in size and complexity, their maintenance continues to become more challenging and costly. Even for the most technologically sophisticated and competent organizations, building and maintaining high-performing software applications with high-quality-code is an extremely challenging and expensive endeavor. Software Refactoring is widely recognized as the key component for maintaining high-quality software by restructuring existing code and reducing technical debt. However, refactoring is difficult to achieve and often neglected due to several limitations in the existing refactoring techniques that reduce their effectiveness. These limitation include, but not limited to, detecting refactoring opportunities, recommending specific refactoring activities, and explaining the recommended changes. Existing techniques are mainly focused on the use of quality metrics such as coupling, cohesion, and the Quality Metrics for Object Oriented Design (QMOOD). However, there are many other factors identified in this work to assist and facilitate different maintenance activities for developers: 1. To structure the refactoring field and existing research results, this dissertation provides the most scalable and comprehensive systematic literature review analyzing the results of 3183 research papers on refactoring covering the last three decades. Based on this survey, we created a taxonomy to classify the existing research, identified research trends and highlighted gaps in the literature for further research. 2. To draw attention to what should be the current refactoring research focus from the developers’ perspective, we carried out the first large scale refactoring study on the most popular online Q&A forum for developers, Stack Overflow. We collected and analyzed posts to identify what developers ask about refactoring, the challenges that practitioners face when refactoring software systems, and what should be the current refactoring research focus from the developers’ perspective. 3. To improve the detection of refactoring opportunities in terms of quality and security in the context of mobile apps, we designed a framework that recommends the files to be refactored based on user reviews. We also considered the detection of refactoring opportunities in the context of web services. We proposed a machine learning-based approach that helps service providers and subscribers predict the quality of service with the least costs. Furthermore, to help developers make an accurate assessment of the quality of their software systems and decide if the code should be refactored, we propose a clustering-based approach to automatically identify the preferred benchmark to use for the quality assessment of a project. 4. Regarding the refactoring generation process, we proposed different techniques to enhance the change operators and seeding mechanism by using the history of applied refactorings and incorporating refactoring dependencies in order to improve the quality of the refactoring solutions. We also introduced the security aspect when generating refactoring recommendations, by investigating the possible impact of improving different quality attributes on a set of security metrics and finding the best trade-off between them. In another approach, we recommend refactorings to prioritize fixing quality issues in security-critical files, improve quality attributes and remove code smells. All the above contributions were validated at the large scale on thousands of open source and industry projects in collaboration with industry partners and the open source community. The contributions of this dissertation are integrated in a cloud-based refactoring framework which is currently used by practitioners.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/171082/1/Chaima Abid Final Dissertation.pdfDescription of Chaima Abid Final Dissertation.pdf : Dissertatio
    corecore