2 research outputs found

    On the Use of a Feedback Tracking Architecture for Satellite Navigation Spoofing Detection

    Get PDF
    In this paper, the Extended Coupled Amplitude Delay Lock Loop (ECADLL) architecture, previously introduced as a solution able to deal with a multipath environment, is revisited and improved to tailor it to spoofing detection purposes. Exploiting a properly-defined decision algorithm, the architecture is able to effectively detect a spoofer attack, as well as distinguish it from other kinds of interference events. The new algorithm is used to classify them according to their characteristics. We also introduce the use of a ratio metric detector in order to reduce the detection latency and the computational load of the architecture

    ๋‹ค์–‘ํ•œ ๊ต๋ž€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ด์šฉํ•œ GNSS ์ˆ˜์‹ ๊ธฐ ์„ฑ๋Šฅ ๋ถ„์„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ๊ธฐ์ฐฝ๋ˆ.The security and safety aspects of global navigation satellite systems have been receiving significant attention from researchers and the general public, because the use of GNSS has been increasing in modern society. In this situation, the importance of GNSS safety and security is also increasing. The most dangerous type of interference is a spoofing because if the receiver captures a spoofing signal, the navigation solution can be controlled by the spoofer. In this paper, I analyzed the characteristics of the main spoofing parameters that determines the success or failure of spoofing process when the spoofing signal is injected into the receiver. I also proposed a CCEE. It determines the spoofing result according to the various spoofing parameter. Also the correlation between spoofing parameters could be explained by estimating the boundary value and line using CCEE. In addition, spoofing success and failure could be distinguished in the spoofing parameter space using CCEE results. When the covert capture is performed at the receiver, the two correlation peaks of authentic and covert capture signals are generated on the code domain. The relative velocity (Doppler difference value) of the two signal peaks determines the time of total spoofing process. In general, the timing at which the DLL tracking lock point is switched from the authentic signal to the spoofing signal is different according to the visible satellite. This raises the value of WSSE. In order to minimize this, the spoofing should be performed in a short time by determining the optimal sweep direction. In a 3D situation, triangles are defined using a particular visible satellites, and the circumcenter direction of the triangle on the victim becomes the optimal direction, and the relative speed of the authentic and the covert capture signal for the visible satellite be maximized on the optimal covert capture direction. To simulate the proposed methods, we defined the covet capture scenarios and generated the IF data to simulate the intended scenarios. Then, using the corresponding IF data, signal processing was performed through SDR. Through this, it was confirmed that the spoofing is successfully performed as intended scenarios through the optimal spoofing parameters generated through CCEE, and the covert capture process time is noticeably minimized through the optimal sweep direction.GNSS๋Š” ์ ์  ํ™œ์šฉ๋ฒ”์œ„๊ฐ€ ํ™•์žฅ๋˜๊ณ  ์žˆ๊ณ , ํ˜„์žฌ๋Š” ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ๋˜์—ˆ๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ GNSS์˜ ์•ˆ์ „ ๋ฐ ๋ณด์•ˆ์˜ ์ค‘์š”์„ฑ ๋˜ํ•œ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” GNSS์˜ ๋ณด์•ˆ์— ๊ฐ€์žฅ ์œ„ํ˜‘์ด ๋˜๋Š” ๊ธฐ๋งŒ์— ๋Œ€ํ•ด์„œ, ๊ธฐ๋งŒ ์‹ ํ˜ธ๊ฐ€ ์ˆ˜์‹ ๊ธฐ์— ์ฃผ์ž…๋˜์—ˆ์„ ๋•Œ ์ˆ˜์‹ ๊ธฐ์˜ ACF๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”๋˜์–ด ๊ฐ€๋ฉฐ ๊ธฐ๋งŒ ๊ณต๊ฒฉ์„ ๊ฒฐ์ •ํ•˜๋Š” ์ฃผ๋œ ๊ธฐ๋งŒํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ํŠน์ง•์— ๋Œ€ํ•ด์„œ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ธฐ๋งŒ ์‹ ํ˜ธ์— ๋”ฐ๋ฅธ ๊ธฐ๋งŒ ๊ฒฐ๊ณผ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” CCEE๋ฅผ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด์„œ ๊ธฐ๋งŒํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ์ƒ๊ด€๊ด€๊ณ„์— ๋Œ€ํ•ด์„œ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ธฐ์กด์—๋Š” ๋ฌด์ˆ˜ํžˆ ๋ฐ˜๋ณต๋œ ๊ณ„์‚ฐ์„ ํ†ตํ•ด์„œ ํŒ๋‹จ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋งŒ ๊ฒฐ๊ณผ๋ฅผ CCEE๋ฅผ ํ†ตํ•ด ํ•œ๋ฒˆ์˜ ๊ณ„์‚ฐ์œผ๋กœ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ CCEE๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฒฝ๊ณ„ ๊ฐ’๊ณผ ๊ฒฝ๊ณ„ ๋ผ์ธ์„ ์ •์˜ํ•จ์œผ๋กœ์จ, ๊ธฐ๋งŒํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์—์„œ ๊ธฐ๋งŒ ์„ฑ๊ณต๊ณผ ์‹คํŒจ๋ฅผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ์Œ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ˆ˜์‹ ๊ธฐ์—์„œ ๊ธฐ๋งŒ์ด ์ˆ˜ํ–‰๋  ๋•Œ, ์ฝ”๋“œ๋„๋ฉ”์ธ์ƒ์—์„œ replica์™€ cross correlation์— ์˜ํ•œ ์›์‹ ํ˜ธ์™€ ๊ธฐ๋งŒ์‹ ํ˜ธ ๊ฐ๊ฐ์˜ correlation peak๊ฐ€ ์ƒ์„ฑ๋œ๋‹ค. ๋‘ ์‹ ํ˜ธ peak์˜ ์ƒ๋Œ€์†๋„๊ฐ€ ๊ธฐ๋งŒ์ด ์ˆ˜ํ–‰๋˜๋Š” ์‹œ๊ฐ„์„ ๊ฒฐ์ •ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๊ธฐ๋งŒ์ด ์ˆ˜ํ–‰๋˜๋Š” ๋™์•ˆ, ๊ฐ ์ฑ„๋„๊ฐ„ DLL tracking lock ์ง€์ ์ด ์›์‹ ํ˜ธ์—์„œ ๊ธฐ๋งŒ์‹ ํ˜ธ๋กœ ์ „ํ™˜๋˜๋Š” ์‹œ์ ์ด ๋‹ค๋ฅด๋‹ค. ์ด๋กœ ์ธํ•ด์„œ WSSE์˜ ๊ฐ’์ด ์ƒ์Šนํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์ตœ์  ๊ธฐ๋งŒ sweep ๋ฐฉํ–ฅ์„ ๊ฒฐ์ •ํ•จ์œผ๋กœ์จ ๋น ๋ฅธ ์‹œ๊ฐ„์— ๊ธฐ๋งŒ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. 3D ์ƒํ™ฉ์—์„œ ํŠน์ • ๊ฐ€์‹œ์œ„์„ฑ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‚ผ๊ฐํ˜•์„ ์ •์˜ํ•˜๊ณ , ํ•ด๋‹น ์‚ผ๊ฐํ˜•์˜ ์™ธ์‹ฌ ๋ฐฉํ–ฅ์ด ์ตœ์  ๋ฐฉํ–ฅ์ด ๋˜๋ฉฐ, ํ•ด๋‹น ๋ฐฉํ–ฅ์ด ๊ธฐ๋งŒ ์ˆ˜ํ–‰์ด ๊ฐ€์žฅ ๋Šฆ๊ฒŒ ๋˜๋Š” ๊ฐ€์‹œ์œ„์„ฑ์— ๋Œ€ํ•œ ์›์‹ ํ˜ธ์™€ ๊ธฐ๋งŒ์‹ ํ˜ธ์˜ ์ƒ๋Œ€์†๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ๋ฐฉํ–ฅ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋“ค์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด์„œ, ๊ธฐ๋งŒ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ •์˜ํ•˜๊ณ , ํ•ด๋‹น ๊ธฐ๋งŒ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์‚ฌํ•˜๋Š” IF data๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ , ํ•ด๋‹น IF data๋ฅผ ์ด์šฉํ•˜์—ฌ, SDR์„ ํ†ตํ•ด์„œ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, CCEE๋ฅผ ์ ์šฉํ•˜์—ฌ ์ƒ์„ฑํ•œ ์ตœ์  ๊ธฐ๋งŒํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ธฐ๋งŒ์ด ์˜๋„๋œ ๋ฐ๋กœ ์ˆ˜ํ–‰์ด ๋˜๋ฉฐ, optimal ๋ฐฉํ–ฅ์„ ํ†ตํ•ด ๊ธฐ๋งŒ์ˆ˜ํ–‰์‹œ๊ฐ„์ด ์ตœ์†Œํ™” ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1. Introduction 1 1.1. Research Motivation ๏ผ‘ 1.2. Related research ๏ผ’ 1.3. Outline of the Dissertation ๏ผ” 1.4. Contributions 5 Chapter 2. Background ๏ผ— 2.1. GPS receiver fundamental ๏ผ— 2.1.1. GPS signal structure ๏ผ— 2.1.2. Signal processing structure of GPS receiver ๏ผ™ 2.1.3. Signal acquisition ๏ผ‘๏ผ 2.1.4. Signal tracking ๏ผ‘๏ผ‘ 2.1.5. Navigation Message Decoding ๏ผ‘๏ผ” 2.1.6. Pseudorange model and range calculation ๏ผ‘๏ผ– 2.2. GNSS interferences and attack strategies ๏ผ‘๏ผ™ 2.2.1. Types of GNSS interferences ๏ผ‘๏ผ™ 2.2.2. Interference attack strategies ๏ผ’๏ผ‘ Chapter 3. Covert Capture Effectiveness Equation ๏ผ’๏ผ– 3.1. Authentic and spoofing signal ACF model ๏ผ’๏ผ– 3.2. Spoofing scenario simulation using ACF model ๏ผ“๏ผ 3.3. Development of spoofing process equation ๏ผ“๏ผ“ 3.3.1. conventional approach for tau calculation ๏ผ“๏ผ“ 3.3.2. proposed approach for ฯ„ calculation ๏ผ“๏ผ” 3.3.3. Spoofing attack success or failure criteria ๏ผ“๏ผ— 3.3.4. Derivation of SPE ๏ผ”๏ผ” 3.4. Analysis of CCEE simulation results ๏ผ”๏ผ™ 3.4.1. CCEE performance analysis ๏ผ”๏ผ™ 3.4.2. Determination of boundary line and surface using SPE ๏ผ•๏ผ“ Chapter 4. Optimal sweep direction of covert capture signal ๏ผ•๏ผ˜ 4.1. Maximum Doppler difference value ๏ผ•๏ผ˜ 4.2. Optimal covert capture direction in 2D case ๏ผ–๏ผ’ 4.3. Optimal covert capture direction in 3D case ๏ผ–๏ผ˜ 4.4. Optimal covert capture direction using optimization method ๏ผ—๏ผ‘ Chapter 5. Covert capture simulation using software defined receiver ๏ผ—๏ผ“ 5.1. Implementation of GNSS measurement and IF data generation simulator ๏ผ—๏ผ“ 5.1.1. Pseudorange model ๏ผ—๏ผ“ 5.1.2. Simulator structure ๏ผ—๏ผ” 5.1.3. Signal amplitude calculation in spoofing scenario ๏ผ—๏ผ• 5.2. CCEE simulation in SDR ๏ผ˜๏ผ‘ 5.2.1. Compensation value calculation for covert capture ๏ผ˜๏ผ” 5.2.2. Compensation value calculation for covert capture ๏ผ˜๏ผ• 5.3. Optimal covert capture direction simulation in SDR ๏ผ™๏ผ’ Chapter 6. Changing the user's trajectory using covert capture signal ๏ผ™๏ผ• Chapter 7. Conclusions and future works ๏ผ‘๏ผ๏ผ’ 7.1. Conclusions ๏ผ‘๏ผ๏ผ’ 7.2. Future works ๏ผ‘๏ผ๏ผ“ Capture 8. Reference ๏ผ‘๏ผ๏ผ”Docto
    corecore