2 research outputs found

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Empirical Approach in Topology Control of Sensor Networks for Urban Environment, Journal of Telecommunications and Information Technology, 2019, nr 1

    Get PDF
    Research into the topology control of Wireless Sensor Networks (WSNs) is geared towards modeling and analysis of methods that may be potentially harnessed to optimize the structure of connections. However, in practice, the ideas and concepts provided by researchers have actually been rarely used by network designers, while sensor systems that have already been deployed and are under continued development in urban environments frequently differ from the patterns and research models available. Moreover, easy access to diversified wireless technologies enabling new solutions to be empirically developed and popularized has also been conducive to strengthening this particular trend
    corecore