1 research outputs found

    On the Tradeoff between Performance and Programmability for Software Defined WiFi Networks

    No full text
    WiFi has become one of the major network access networks due to its simple technical implementation and high-bandwidth provisioning. In this paper, we studied software defined WiFi networks (SDWN) against traditional WiFi networks to understand the potential benefits, such as the ability of SDWN to effectively hide the handover delay between access points (AP) of the adoption of the SDWN architecture on WiFi networks and identify representative application scenarios where such SDWN approach could bring additional benefits. This study delineated the performance bottlenecks such as the throughput degradation by around 50% compared with the conventional WiFi networks. In addition, our study also shed some insights into performance optimization issues. All of the performance measurements were conducted on a network testbed consisting of a single basic service set (BSS) and an extended service set (ESS) managed by a single SDN controller deployed with various laboratory settings. Our evaluation included the throughput performance under different traffic loads with different number of nodes and packet sizes for both TCP and UDP traffic flows. Handover delays were measured during the roaming phase between different APs against the traditional WiFi networks. Our results have demonstrated the tradeoff between performance and programmability of software defined APs
    corecore