4 research outputs found

    The area of a self-similar fragmentation

    Full text link
    We consider the area A=\int_0^{\infty}\left(\sum_{i=1}^{\infty} X_i(t)\right) \d t of a self-similar fragmentation process \X=(\X(t), t\geq 0) with negative index. We characterize the law of AA by an integro-differential equation. The latter may be viewed as the infinitesimal version of a recursive distribution equation that arises naturally in this setting. In the case of binary splitting, this yields a recursive formula for the entire moments of AA which generalizes known results for the area of the Brownian excursion

    Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas

    Full text link
    This survey is a collection of various results and formulas by different authors on the areas (integrals) of five related processes, viz.\spacefactor =1000 Brownian motion, bridge, excursion, meander and double meander; for the Brownian motion and bridge, which take both positive and negative values, we consider both the integral of the absolute value and the integral of the positive (or negative) part. This gives us seven related positive random variables, for which we study, in particular, formulas for moments and Laplace transforms; we also give (in many cases) series representations and asymptotics for density functions and distribution functions. We further study Wright's constants arising in the asymptotic enumeration of connected graphs; these are known to be closely connected to the moments of the Brownian excursion area. The main purpose is to compare the results for these seven Brownian areas by stating the results in parallel forms; thus emphasizing both the similarities and the differences. A recurring theme is the Airy function which appears in slightly different ways in formulas for all seven random variables. We further want to give explicit relations between the many different similar notations and definitions that have been used by various authors. There are also some new results, mainly to fill in gaps left in the literature. Some short proofs are given, but most proofs are omitted and the reader is instead referred to the original sources.Comment: Published at http://dx.doi.org/10.1214/07-PS104 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotics and scaling analysis of 2-dimensional lattice models of vesicles and polymers

    Get PDF
    PhDThe subject of this thesis is the asymptotic behaviour of generating functions of different combinatorial models of two-dimensional lattice walks and polygons, enumerated with respect to different parameters, such as perimeter, number of steps and area. These models occur in various applications in physics, computer science and biology. In particular, they can be seen as simple models of biological vesicles or polymers. Of particular interest is the singular behaviour of the generating functions around special, so-called multicritical points in their parameter space, which correspond physically to phase transitions. The singular behaviour around the multicritical point is described by a scaling function, alongside a small set of critical exponents. Apart from some non-rigorous heuristics, our asymptotic analysis mainly consists in applying the method of steepest descents to a suitable integral expression for the exact solution for the generating function of a given model. The similar mathematical structure of the exact solutions of the different models allows for a unified treatment. In the saddle point analysis, the multicritical points correspond to points in the parameter space at which several saddle points of the integral kernels coalesce. Generically, two saddle points coalesce, in which case the scaling function is expressible in terms of the Airy function. As we will see, this is the case for Dyck and Schröder paths, directed column-convex polygons and partially directed self-avoiding walks. The result for Dyck paths also allows for the scaling analysis of Bernoulli meanders (also known as ballot paths). We then construct the model of deformed Dyck paths, where three saddle points coalesce in the corresponding integral kernel, thereby leading to an asymptotic expression in terms of a bivariate, generalised Airy integral.Universität Erlangen-Nürnberg Queen Mary Postgraduate Research Fun
    corecore