617 research outputs found

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    An instruction systolic array architecture for multiple neural network types

    Get PDF
    Modern electronic systems, especially sensor and imaging systems, are beginning to incorporate their own neural network subsystems. In order for these neural systems to learn in real-time they must be implemented using VLSI technology, with as much of the learning processes incorporated on-chip as is possible. The majority of current VLSI implementations literally implement a series of neural processing cells, which can be connected together in an arbitrary fashion. Many do not perform the entire neural learning process on-chip, instead relying on other external systems to carry out part of the computation requirements of the algorithm. The work presented here utilises two dimensional instruction systolic arrays in an attempt to define a general neural architecture which is closer to the biological basis of neural networks - it is the synapses themselves, rather than the neurons, that have dedicated processing units. A unified architecture is described which can be programmed at the microcode level in order to facilitate the processing of multiple neural network types. An essential part of neural network processing is the neuron activation function, which can range from a sequential algorithm to a discrete mathematical expression. The architecture presented can easily carry out the sequential functions, and introduces a fast method of mathematical approximation for the more complex functions. This can be evaluated on-chip, thus implementing the entire neural process within a single system. VHDL circuit descriptions for the chip have been generated, and the systolic processing algorithms and associated microcode instruction set for three different neural paradigms have been designed. A software simulator of the architecture has been written, giving results for several common applications in the field

    Stochastic arrays and learning networks

    Get PDF
    This thesis presents a study of stochastic arrays and learning networks. These arrays will be shown to consist of simple elements utilising probabilistic coding techniques which may interact with a random and noisy environment to produce useful results. Such networks have generated considerable interest since it is possible to design large parallel self-organising arrays of these elements which are trained by example rather than explicit instruction. Once the learning process has been completed, they then have the potential ability to form generalisations, perform global optimisation of traditionally difficult problems such as routing and incorporate an associative memory capability which can enable such tasks as image recognition and reconstruction to be performed, even when given a partial or noisy view of the target. Since the method of operation of such elements is thought to emulate the basic properties of the neurons of the brain, these arrays have been termed neural 'networks. The research demonstrates the use of stochastic elements for digital signal processing by presenting a novel systolic array, utilising a simple, replicated cell structure, which is shown to perform the operations of Cyclic Correlation and the Discrete Fourier Transform on inherently random and noisy probabilistic single bit inputs. This work is then extended into the field of stochastic learning automata and to neural networks by examining the Associative Reward-Punish (A(_R-P)) pattern recognising learning automaton. The thesis concludes that all the networks described may potentially be generalised to simple variations of one standard probabilistic element utilising stochastic coding, whose properties resemble those of biological neurons. A novel study is presented which describes how a powerful deterministic algorithm, previously considered to be biologically unviable due to its nature, may be represented in this way. It is expected that combinations of these methods may lead to a series of useful hybrid techniques for training networks. The nature of the element generalisation is particularly important as it reveals the potential for encoding successful algorithms in cheap, simple hardware with single bit interconnections. No claim is made that the particular algorithms described are those actually utilised by the brain, only to demonstrate that those properties observed of biological neurons are capable of endowing collective computational ability and that actual biological algorithms may perhaps then become apparent when viewed in this light
    corecore