37,303 research outputs found

    A Finslerian version of 't Hooft Deterministic Quantum Models

    Full text link
    Using the Finsler structure living in the phase space associated to the tangent bundle of the configuration manifold, deterministic models at the Planck scale are obtained. The Hamiltonian function are constructed directly from the geometric data and some assumptions concerning time inversion symmetry. The existence of a maximal acceleration and speed is proved for Finslerian deterministic models. We investigate the spontaneous symmetry breaking of the orthogonal symmetry SO(6N) of the Hamiltonian of a deterministic system. This symmetry break implies the non-validity of the argument used to obtain Bell's inequalities for spin states. It is introduced and motivated in the context of Randers spaces an example of simple 't Hooft model with interactions.Comment: 25 pages; no figures. String discussion deleted. Some minor change

    Hyperbolic billiards of pure D=4 supergravities

    Full text link
    We compute the billiards that emerge in the Belinskii-Khalatnikov-Lifshitz (BKL) limit for all pure supergravities in D=4 spacetime dimensions, as well as for D=4, N=4 supergravities coupled to k (N=4) Maxwell supermultiplets. We find that just as for the cases N=0 and N=8 investigated previously, these billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. Hence, the dynamics is chaotic in the BKL limit. A new feature arises, however, which is that the relevant Kac-Moody algebra can be the Lorentzian extension of a twisted affine Kac-Moody algebra, while the N=0 and N=8 cases are untwisted. This occurs for N=5, N=3 and N=2. An understanding of this property is provided by showing that the data relevant for determining the billiards are the restricted root system and the maximal split subalgebra of the finite-dimensional real symmetry algebra characterizing the toroidal reduction to D=3 spacetime dimensions. To summarize: split symmetry controls chaos.Comment: 21 page

    Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends

    Full text link
    Stationary bifurcations in several nonlinear models of fluid conveying pipes fixed at both ends are analyzed with the use of Lyapunov-Schmidt reduction and singularity theory. Influence of gravitational force, curvature and vertical elastic support on various properties of bifurcating solutions are investigated. In particular the conditions for occurrence of supercritical and subcritical bifurcations are presented for the models of Holmes, Thurman and Mote, and Paidoussis.Comment: to appear in Journal of Fluids and Structures; 6 figure
    corecore