387 research outputs found

    Reimagining Speech: A Scoping Review of Deep Learning-Powered Voice Conversion

    Full text link
    Research on deep learning-powered voice conversion (VC) in speech-to-speech scenarios is getting increasingly popular. Although many of the works in the field of voice conversion share a common global pipeline, there is a considerable diversity in the underlying structures, methods, and neural sub-blocks used across research efforts. Thus, obtaining a comprehensive understanding of the reasons behind the choice of the different methods in the voice conversion pipeline can be challenging, and the actual hurdles in the proposed solutions are often unclear. To shed light on these aspects, this paper presents a scoping review that explores the use of deep learning in speech analysis, synthesis, and disentangled speech representation learning within modern voice conversion systems. We screened 621 publications from more than 38 different venues between the years 2017 and 2023, followed by an in-depth review of a final database consisting of 123 eligible studies. Based on the review, we summarise the most frequently used approaches to voice conversion based on deep learning and highlight common pitfalls within the community. Lastly, we condense the knowledge gathered, identify main challenges and provide recommendations for future research directions

    Rhythm-Flexible Voice Conversion without Parallel Data Using Cycle-GAN over Phoneme Posteriorgram Sequences

    Full text link
    Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the predicted utterance has to be fixed to that of the input utterance, which limits the flexibility in mimicking the speaking rates and rhythmic patterns for the target speaker. On the other hand, sequence-to-sequence learning model was used to remove the above length constraint, but parallel training data are needed. In this paper, we propose an approach utilizing sequence-to-sequence model trained with unsupervised Cycle-GAN to perform the transformation between the phoneme posteriorgram sequences for different speakers. In this way, the length constraint mentioned above is removed to offer rhythm-flexible voice conversion without requiring parallel data. Preliminary evaluation on two datasets showed very encouraging results.Comment: 8 pages, 6 figures, Submitted to SLT 201
    • …
    corecore