14,040 research outputs found

    On the Complexity of tt-Closeness Anonymization and Related Problems

    Full text link
    An important issue in releasing individual data is to protect the sensitive information from being leaked and maliciously utilized. Famous privacy preserving principles that aim to ensure both data privacy and data integrity, such as kk-anonymity and ll-diversity, have been extensively studied both theoretically and empirically. Nonetheless, these widely-adopted principles are still insufficient to prevent attribute disclosure if the attacker has partial knowledge about the overall sensitive data distribution. The tt-closeness principle has been proposed to fix this, which also has the benefit of supporting numerical sensitive attributes. However, in contrast to kk-anonymity and ll-diversity, the theoretical aspect of tt-closeness has not been well investigated. We initiate the first systematic theoretical study on the tt-closeness principle under the commonly-used attribute suppression model. We prove that for every constant tt such that 0≀t<10\leq t<1, it is NP-hard to find an optimal tt-closeness generalization of a given table. The proof consists of several reductions each of which works for different values of tt, which together cover the full range. To complement this negative result, we also provide exact and fixed-parameter algorithms. Finally, we answer some open questions regarding the complexity of kk-anonymity and ll-diversity left in the literature.Comment: An extended abstract to appear in DASFAA 201

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    On Parameterized Complexity of Group Activity Selection Problems on Social Networks

    Full text link
    In Group Activity Selection Problem (GASP), players form coalitions to participate in activities and have preferences over pairs of the form (activity, group size). Recently, Igarashi et al. have initiated the study of group activity selection problems on social networks (gGASP): a group of players can engage in the same activity if the members of the group form a connected subset of the underlying communication structure. Igarashi et al. have primarily focused on Nash stable outcomes, and showed that many associated algorithmic questions are computationally hard even for very simple networks. In this paper we study the parameterized complexity of gGASP with respect to the number of activities as well as with respect to the number of players, for several solution concepts such as Nash stability, individual stability and core stability. The first parameter we consider in the number of activities. For this parameter, we propose an FPT algorithm for Nash stability for the case where the social network is acyclic and obtain a W[1]-hardness result for cliques (i.e., for classic GASP); similar results hold for individual stability. In contrast, finding a core stable outcome is hard even if the number of activities is bounded by a small constant, both for classic GASP and when the social network is a star. Another parameter we study is the number of players. While all solution concepts we consider become polynomial-time computable when this parameter is bounded by a constant, we prove W[1]-hardness results for cliques (i.e., for classic GASP).Comment: 9 pages, long version of accepted AAMAS-17 pape

    Combinatorial Voter Control in Elections

    Get PDF
    Voter control problems model situations such as an external agent trying to affect the result of an election by adding voters, for example by convincing some voters to vote who would otherwise not attend the election. Traditionally, voters are added one at a time, with the goal of making a distinguished alternative win by adding a minimum number of voters. In this paper, we initiate the study of combinatorial variants of control by adding voters: In our setting, when we choose to add a voter~vv, we also have to add a whole bundle Îș(v)\kappa(v) of voters associated with vv. We study the computational complexity of this problem for two of the most basic voting rules, namely the Plurality rule and the Condorcet rule.Comment: An extended abstract appears in MFCS 201
    • 

    corecore