4 research outputs found

    Facets of the Fully Mixed Nash Equilibrium Conjecture

    Full text link
    In this work, we continue the study of the many facets of the Fully Mixed Nash Equilibrium Conjecture, henceforth abbreviated as the FMNE Conjecture, in selfish routing for the special case of n identical users over two (identical) parallel links. We introduce a new measure of Social Cost, defined to be the expectation of the square of the maximum congestion on a link; we call it Quadratic Maximum Social Cost. A Nash equilibrium is a stable state where no user can improve her (expected) latency by switching her mixed strategy; a worst-case Nash equilibrium is one that maximizes Quadratic Maximum Social Cost. In the fully mixed Nash equilibrium, allmixed strategies achieve full support. Formulated within this framework is yet another facet of the FMNE Conjecture, which states that the fully mixed Nash equilibrium is the worst-case Nash equilibrium. We present an extensive proof of the FMNE Conjecture; the proof employs a mixture of combinatorial arguments and ana-lytical estimations. Some of these analytical estimations are derived through some new bounds on generalized medians of the binomial distribution [22] we obtain, which are of independent interest.

    Network flow problems and congestion games : complexity and approximation results

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2006.Includes bibliographical references (p. 155-164).(cont.) We first address the complexity of finding an optimal minimum cost solution to a congestion game. We consider both network and general congestion games, and we examine several variants of the problem concerning the structure of the game and its associated cost functions. Many of the problem variants are NP-hard, though we do identify several versions of the games that are solvable in polynomial time. We then investigate existence and the price of anarchy of pure Nash equilibria in k-splittable congestion games with linear costs. A k-splittable congestion game is one in which each player may split its flow on at most k different paths. We identify conditions for the existence of equilibria by providing a series of potential functions. For the price of anarchy, we show an asymptotic lower bound of 2.4 for unweighted k-splittable congestion games and 2.401 for weighted k-splittable congestion games, and an upper bound of 2.618 in both cases.In this thesis we examine four network flow problems arising in the study of transportation, communication, and water networks. The first of these problems is the Integer Equal Flow problem, a network flow variant in which some arcs are restricted to carry equal amounts of flow. Our main contribution is that this problem is not approximable within a factor of 2n(1-epsilon]), for any fixed [epsilon] > 0, where n is the number of nodes in the graph. We extend this result to a number of variants on the size and structure of the arc sets. We next study the Pup Matching problem, a truck routing problem where two commodities ('pups') traversing an arc together in the network incur the arc cost only once. We propose a tighter integer programming formulation for this problem, and we address practical problems that arise with implementing such integer programming solutions. Additionally, we provide approximation and exact algorithms for special cases of the problem where the number of pups is fixed or the total cost in the network is bounded. Our final two problems are on the topic of congestion games, which were introduced in the area of communications networks.by Carol Meyers.Ph.D

    On the Structure and Complexity of Worst-Case Equilibria

    No full text
    We study an intensively studied resource allocation game introduced by Koutsoupias and Papadimitriou where n weighted jobs are allocated to m identical machines. It was conjectured by Gairing et al. that the fully mixed Nash equilibrium is the worst Nash equilibrium for this game w. r. t. the expected maximum load over all machines. The known algorithms for approximating the so-called "price of anarchy" rely on this conjecture. We present a counter-example to the conjecture showing that fully mixed equilibria cannot be used to approximate the price of anarchy within reasonable factors. In addition, we present an algorithm that constructs so-called concentrated equilibria that approximate the worst-case Nash equilibrium within constant factors
    corecore