946 research outputs found

    On the Strategy and Behavior of Bitcoin Mining with N-attackers

    Get PDF
    Selfish mining is a well-known mining attack strategy discovered by Eyal and Sirer in 2014. After that, the attackers\u27 strategy space has been extended by many works. These works only analyze the strategy and behavior of one single attacker. The extension of the strategy space is based on the assumption that there is only one attacker in the blockchain network. However, a proof of work blockchain is likely to have several attackers. The attackers can be independent of other attackers instead of sharing information and attacking the blockchain as a whole. During this problem, we are the team who for the first time analyze the miners\u27 behavior in a proof of work blockchain with several attackers by establishing a new model. Based on our model, we extend the attackers\u27 strategy space by proposing a new strategy set publish-n. Meanwhile, we revisit other attacking strategies such as selfish mining and stubborn mining in our model to explore whether these strategies work or not when there are several attackers. We compare the performance of different strategies through relative stale block rate of the attackers. In a proof of work blockchain model with two attackers, strategy publish-n can beat selfish mining by up to 26.3%

    A Deep Dive into Blockchain Selfish Mining

    Get PDF
    This paper studies a fundamental problem regarding the security of blockchain on how the existence of multiple misbehaving pools influences the profitability of selfish mining. Each selfish miner maintains a private chain and makes it public opportunistically for the purpose of acquiring more rewards incommensurate to his Hashrate. We establish a novel Markov chain model to characterize all the state transitions of public and private chains. The minimum requirement of Hashrate together with the minimum delay of being profitable is derived in close-form. The former reduces to 21.48% with the symmetric selfish miners, while their competition with asymmetric Hashrates puts forward a higher requirement of the profitable threshold. The profitable delay increases with the decrease of the Hashrate of selfish miners, making the mining pools more cautious on performing selfish mining.Comment: 6 pages, 13 figure

    On Cyber Risk Management of Blockchain Networks: A Game Theoretic Approach

    Full text link
    Open-access blockchains based on proof-of-work protocols have gained tremendous popularity for their capabilities of providing decentralized tamper-proof ledgers and platforms for data-driven autonomous organization. Nevertheless, the proof-of-work based consensus protocols are vulnerable to cyber-attacks such as double-spending. In this paper, we propose a novel approach of cyber risk management for blockchain-based service. In particular, we adopt the cyber-insurance as an economic tool for neutralizing cyber risks due to attacks in blockchain networks. We consider a blockchain service market, which is composed of the infrastructure provider, the blockchain provider, the cyber-insurer, and the users. The blockchain provider purchases from the infrastructure provider, e.g., a cloud, the computing resources to maintain the blockchain consensus, and then offers blockchain services to the users. The blockchain provider strategizes its investment in the infrastructure and the service price charged to the users, in order to improve the security of the blockchain and thus optimize its profit. Meanwhile, the blockchain provider also purchases a cyber-insurance from the cyber-insurer to protect itself from the potential damage due to the attacks. In return, the cyber-insurer adjusts the insurance premium according to the perceived risk level of the blockchain service. Based on the assumption of rationality for the market entities, we model the interaction among the blockchain provider, the users, and the cyber-insurer as a two-level Stackelberg game. Namely, the blockchain provider and the cyber-insurer lead to set their pricing/investment strategies, and then the users follow to determine their demand of the blockchain service. Specifically, we consider the scenario of double-spending attacks and provide a series of analytical results about the Stackelberg equilibrium in the market game
    • …
    corecore