1 research outputs found

    On the Statistics of Reaction-Diffusion Simulations for Molecular Communication

    Full text link
    A molecule traveling in a realistic propagation environment can experience stochastic interactions with other molecules and the environment boundary. The statistical behavior of some isolated phenomena, such as dilute unbounded molecular diffusion, are well understood. However, the coupling of multiple interactions can impede closed-form analysis, such that simulations are required to determine the statistics. This paper compares the statistics of molecular reaction-diffusion simulation models from the perspective of molecular communication systems. Microscopic methods track the location and state of every molecule, whereas mesoscopic methods partition the environment into virtual containers that hold molecules. The properties of each model are described and compared with a hybrid of both models. Simulation results also assess the accuracy of Poisson and Gaussian approximations of the underlying Binomial statistics.Comment: 6 pages, 1 table, 10 figures. Submitted to the 2nd ACM International Conference on Nanoscale Computing and Communication (ACM NANOCOM 2015) on May 16, 201
    corecore