4,791 research outputs found

    Outage rates and outage durations of opportunistic relaying systems

    Full text link
    Opportunistic relaying is a simple yet efficient cooperation scheme that achieves full diversity and preserves the spectral efficiency among the spatially distributed stations. However, the stations' mobility causes temporal correlation of the system's capacity outage events, which gives rise to its important second-order outage statistical parameters, such as the average outage rate (AOR) and the average outage duration (AOD). This letter presents exact analytical expressions for the AOR and the AOD of an opportunistic relaying system, which employs a mobile source and a mobile destination (without a direct path), and an arbitrary number of (fixed-gain amplify-and-forward or decode-and-forward) mobile relays in Rayleigh fading environment

    On the Second Order Statistics of the Multihop Rayleigh Fading Channel

    Full text link
    Second order statistics provides a dynamic representation of a fading channel and plays an important role in the evaluation and design of the wireless communication systems. In this paper, we present a novel analytical framework for the evaluation of important second order statistical parameters, as the level crossing rate (LCR) and the average fade duration (AFD) of the amplify-and-forward multihop Rayleigh fading channel. More specifically, motivated by the fact that this channel is a cascaded one and can be modeled as the product of N fading amplitudes, we derive novel analytical expressions for the average LCR and the AFD of the product of N Rayleigh fading envelopes (or of the recently so-called N*Rayleigh channel). Furthermore, we derive simple and efficient closed-form approximations to the aforementioned parameters, using the multivariate Laplace approximation theorem. It is shown that our general results reduce to the corresponding ones of the specific dual-hop case, previously published. Numerical and computer simulation examples verify the accuracy of the presented mathematical analysis and show the tightness of the proposed approximations

    Level Crossing Rate and Average Fade Duration of the Multihop Rayleigh Fading Channel

    Full text link
    We present a novel analytical framework for the evaluation of important second order statistical parameters, as the level crossing rate (LCR) and the average fade duration (AFD) of the amplify-and-forward multihop Rayleigh fading channel. More specifically, motivated by the fact that this channel is a cascaded one, which can be modelled as the product of N fading amplitudes, we derive novel analytical expressions for the average LCR and AFD of the product of N Rayleigh fading envelopes, or of the recently so-called N*Rayleigh channel. Furthermore, we derive simple and efficient closed-form approximations to the aforementioned parameters, using the multivariate Laplace approximation theorem. It is shown that our general results reduce to the specific dual-hop case, previously published. Numerical and computer simulation examples verify the accuracy of the presented mathematical analysis and show the tightness of the proposed approximations
    • …
    corecore