40,624 research outputs found

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Stability and noise in biochemical switches

    Full text link
    Many processes in biology, from the regulation of gene expression in bacteria to memory in the brain, involve switches constructed from networks of biochemical reactions. Crucial molecules are present in small numbers, raising questions about noise and stability. Analysis of noise in simple reaction schemes indicates that switches stable for years and switchable in milliseconds can be built from fewer than one hundred molecules. Prospects for direct tests of this prediction, as well as implications, are discussed

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis

    Get PDF
    Angiogenesis, the process by which new blood capillaries grow into a tissue from surrounding parent vessels, is a key event in dermal wound healing, malignant-tumour growth, and other pathologic conditions. In wound healing, new capillaries deliver vital metabolites such as amino acids and oxygen to the cells in the wound which are involved in a complex sequence of repair processes. The key cellular constituents of these new capillaries are endothelial cells: their interactions with soluble biochemical and insoluble extracellular matrix (ECM) proteins have been well documented recently, although the biological mechanisms underlying wound-healing angiogenesis are incompletely understood. Considerable recent research, including some continuum mathematical models, have focused on the interactions between endothelial cells and soluble regulators (such as growth factors). In this work, a similar modelling framework is used to investigate the roles of the insoluble ECM substrate, of which collagen is the predominant macromolecular protein. Our model consists of a partial differential equation for the endothelial-cell density (as a function of position and time) coupled to an ordinary differential equation for the ECM density. The ECM is assumed to regulate cell movement (both random and directed) and proliferation, whereas the cells synthesize and degrade the ECM. Analysis and numerical solutions of these equations highlights the roles of these processes in wound-healing angiogenesis. A nonstandard approximation analysis yields insight into the travel ling-wave structure of the system. The model is extended to two spatial dimensions (parallel and perpendicular to the plane of the skin), for which numerical simulations are presented. The model predicts that ECM-mediated random motility and cell proliferation are key processes which drive angiogenesis and that the details of the functional dependence of these processes on the ECM density, together with the rate of ECM remodelling, determine the qualitative nature of the angiogenic response. These predictions are experimentally testable, and they may lead towards a greater understanding of the biological mechanisms involved in wound-healing angiogenesis

    On the foundations of cancer modelling: selected topics, speculations, & perspectives

    Get PDF
    This paper presents a critical review of selected topics related to the modelling of cancer onset, evolution and growth, with the aim of illustrating, to a wide applied mathematical readership, some of the novel mathematical problems in the field. This review attempts to capture, from the appropriate literature, the main issues involved in the modelling of phenomena related to cancer dynamics at all scales which characterise this highly complex system: from the molecular scale up to that of tissue. The last part of the paper discusses the challenge of developing a mathematical biological theory of tumour onset and evolution
    • …
    corecore