16,197 research outputs found

    On Stability Region and Delay Performance of Linear-Memory Randomized Scheduling for Time-Varying Networks

    Full text link
    Throughput optimal scheduling policies in general require the solution of a complex and often NP-hard optimization problem. Related literature has shown that in the context of time-varying channels, randomized scheduling policies can be employed to reduce the complexity of the optimization problem but at the expense of a memory requirement that is exponential in the number of data flows. In this paper, we consider a Linear-Memory Randomized Scheduling Policy (LM-RSP) that is based on a pick-and-compare principle in a time-varying network with NN one-hop data flows. For general ergodic channel processes, we study the performance of LM-RSP in terms of its stability region and average delay. Specifically, we show that LM-RSP can stabilize a fraction of the capacity region. Our analysis characterizes this fraction as well as the average delay as a function of channel variations and the efficiency of LM-RSP in choosing an appropriate schedule vector. Applying these results to a class of Markovian channels, we provide explicit results on the stability region and delay performance of LM-RSP.Comment: Long version of preprint to appear in the IEEE Transactions on Networkin

    Dynamic Server Allocation over Time Varying Channels with Switchover Delay

    Get PDF
    We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and show that it is throughput-optimal asymptotically in the frame length. The FBDC policy is applicable to a broad class of network control systems and provides a new framework for developing throughput-optimal network control policies using state-action frequencies. Furthermore, we develop simple Myopic policies that provably achieve more than 90% of the stability region. In the second part of the paper, we extend our results to systems with an arbitrary but finite number of queues.Comment: 38 Pages, 18 figures. arXiv admin note: substantial text overlap with arXiv:1008.234

    Robust And Optimal Opportunistic Scheduling For Downlink 2-Flow Network Coding With Varying Channel Quality and Rate Adaptation

    Get PDF
    This paper considers the downlink traffic from a base station to two different clients. When assuming infinite backlog, it is known that inter-session network coding (INC) can significantly increase the throughput of each flow. However, the corresponding scheduling solution (when assuming dynamic arrivals instead and requiring bounded delay) is still nascent. For the 2-flow downlink scenario, we propose the first opportunistic INC + scheduling solution that is provably optimal for time-varying channels, i.e., the corresponding stability region matches the optimal Shannon capacity. Specifically, we first introduce a new binary INC operation, which is distinctly different from the traditional wisdom of XORing two overheard packets. We then develop a queue-length-based scheduling scheme, which, with the help of the new INC operation, can robustly and optimally adapt to time-varying channel quality. We then show that the proposed algorithm can be easily extended for rate adaptation and it again robustly achieves the optimal throughput. A byproduct of our results is a scheduling scheme for stochastic processing networks (SPNs) with random departure, which relaxes the assumption of deterministic departure in the existing results. The new SPN scheduler could thus further broaden the applications of SPN scheduling to other real-world scenarios

    Dynamic Control of Tunable Sub-optimal Algorithms for Scheduling of Time-varying Wireless Networks

    Full text link
    It is well known that for ergodic channel processes the Generalized Max-Weight Matching (GMWM) scheduling policy stabilizes the network for any supportable arrival rate vector within the network capacity region. This policy, however, often requires the solution of an NP-hard optimization problem. This has motivated many researchers to develop sub-optimal algorithms that approximate the GMWM policy in selecting schedule vectors. One implicit assumption commonly shared in this context is that during the algorithm runtime, the channel states remain effectively unchanged. This assumption may not hold as the time needed to select near-optimal schedule vectors usually increases quickly with the network size. In this paper, we incorporate channel variations and the time-efficiency of sub-optimal algorithms into the scheduler design, to dynamically tune the algorithm runtime considering the tradeoff between algorithm efficiency and its robustness to changing channel states. Specifically, we propose a Dynamic Control Policy (DCP) that operates on top of a given sub-optimal algorithm, and dynamically but in a large time-scale adjusts the time given to the algorithm according to queue backlog and channel correlations. This policy does not require knowledge of the structure of the given sub-optimal algorithm, and with low overhead can be implemented in a distributed manner. Using a novel Lyapunov analysis, we characterize the throughput stability region induced by DCP and show that our characterization can be tight. We also show that the throughput stability region of DCP is at least as large as that of any other static policy. Finally, we provide two case studies to gain further intuition into the performance of DCP.Comment: Submitted for journal consideration. A shorter version was presented in IEEE IWQoS 200

    Throughput Optimal Scheduling with Dynamic Channel Feedback

    Full text link
    It is well known that opportunistic scheduling algorithms are throughput optimal under full knowledge of channel and network conditions. However, these algorithms achieve a hypothetical achievable rate region which does not take into account the overhead associated with channel probing and feedback required to obtain the full channel state information at every slot. We adopt a channel probing model where β\beta fraction of time slot is consumed for acquiring the channel state information (CSI) of a single channel. In this work, we design a joint scheduling and channel probing algorithm named SDF by considering the overhead of obtaining the channel state information. We first analytically prove SDF algorithm can support 1+ϵ1+\epsilon fraction of of the full rate region achieved when all users are probed where ϵ\epsilon depends on the expected number of users which are not probed. Then, for homogenous channel, we show that when the number of users in the network is greater than 3, ϵ>0\epsilon > 0, i.e., we guarantee to expand the rate region. In addition, for heterogenous channels, we prove the conditions under which SDF guarantees to increase the rate region. We also demonstrate numerically in a realistic simulation setting that this rate region can be achieved by probing only less than 50% of all channels in a CDMA based cellular network utilizing high data rate protocol under normal channel conditions.Comment: submitte
    corecore