3 research outputs found

    Random and cooperative sequential adsorption

    Get PDF
    Irreversible random sequential adsorption (RSA) on lattices, and continuum car parking analogues, have long received attention as models for reactions on polymer chains, chemisorption on single-crystal surfaces, adsorption in colloidal systems, and solid state transformations. Cooperative generalizations of these models (CSA) are sometimes more appropriate, and can exhibit richer kinetics and spatial structure, e.g., autocatalysis and clustering. The distribution of filled or transformed sites in RSA and CSA is not described by an equilibrium Gibbs measure. This is the case even for the saturation jammed state of models where the lattice or space cannot fill completely. However exact analysis is often possible in one dimension, and a variety of powerful analytic methods have been developed for higher dimensional models. Here we review the detailed understanding of asymptotic kinetics, spatial correlations, percolative structure, etc., which is emerging for these far-from-equilibrium processes

    International Congress of Mathematicians: 2022 July 6–14: Proceedings of the ICM 2022

    Get PDF
    Following the long and illustrious tradition of the International Congress of Mathematicians, these proceedings include contributions based on the invited talks that were presented at the Congress in 2022. Published with the support of the International Mathematical Union and edited by Dmitry Beliaev and Stanislav Smirnov, these seven volumes present the most important developments in all fields of mathematics and its applications in the past four years. In particular, they include laudations and presentations of the 2022 Fields Medal winners and of the other prestigious prizes awarded at the Congress. The proceedings of the International Congress of Mathematicians provide an authoritative documentation of contemporary research in all branches of mathematics, and are an indispensable part of every mathematical library
    corecore