35,839 research outputs found

    Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural Networks

    Full text link
    Physically informed neural networks (PINNs) are a promising emerging method for solving differential equations. As in many other deep learning approaches, the choice of PINN design and training protocol requires careful craftsmanship. Here, we suggest a comprehensive theoretical framework that sheds light on this important problem. Leveraging an equivalence between infinitely over-parameterized neural networks and Gaussian process regression (GPR), we derive an integro-differential equation that governs PINN prediction in the large data-set limit -- the Neurally-Informed Equation (NIE). This equation augments the original one by a kernel term reflecting architecture choices and allows quantifying implicit bias induced by the network via a spectral decomposition of the source term in the original differential equation

    Self-supervised debiasing using low rank regularization

    Full text link
    Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability. While most existing debiasing methods require full supervision on either spurious attributes or target labels, training a debiased model from a limited amount of both annotations is still an open question. To address this issue, we investigate an interesting phenomenon using the spectral analysis of latent representations: spuriously correlated attributes make neural networks inductively biased towards encoding lower effective rank representations. We also show that a rank regularization can amplify this bias in a way that encourages highly correlated features. Leveraging these findings, we propose a self-supervised debiasing framework potentially compatible with unlabeled samples. Specifically, we first pretrain a biased encoder in a self-supervised manner with the rank regularization, serving as a semantic bottleneck to enforce the encoder to learn the spuriously correlated attributes. This biased encoder is then used to discover and upweight bias-conflicting samples in a downstream task, serving as a boosting to effectively debias the main model. Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines and, in some cases, even outperforms state-of-the-art supervised debiasing approaches
    • …
    corecore