5,343 research outputs found

    Lattices with non-Shannon Inequalities

    Full text link
    We study the existence or absence of non-Shannon inequalities for variables that are related by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice with non-Shannon inequalities there exist lattices with many more variables without non-Shannon inequalities. We search for conditions that ensures that no non-Shannon inequalities exist. It is demonstrated that 3-dimensional distributive lattices cannot have non-Shannon inequalities and planar modular lattices cannot have non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group.Comment: Ten pages. Submitted to ISIT 2015. The appendix will not appear in the proceeding

    On active and passive testing

    Full text link
    Given a property of Boolean functions, what is the minimum number of queries required to determine with high probability if an input function satisfies this property or is "far" from satisfying it? This is a fundamental question in Property Testing, where traditionally the testing algorithm is allowed to pick its queries among the entire set of inputs. Balcan, Blais, Blum and Yang have recently suggested to restrict the tester to take its queries from a smaller random subset of polynomial size of the inputs. This model is called active testing, and in the extreme case when the size of the set we can query from is exactly the number of queries performed it is known as passive testing. We prove that passive or active testing of k-linear functions (that is, sums of k variables among n over Z_2) requires Theta(k*log n) queries, assuming k is not too large. This extends the case k=1, (that is, dictator functions), analyzed by Balcan et. al. We also consider other classes of functions including low degree polynomials, juntas, and partially symmetric functions. Our methods combine algebraic, combinatorial, and probabilistic techniques, including the Talagrand concentration inequality and the Erdos--Rado theorem on Delta-systems.Comment: 16 page

    Quantitative information flow under generic leakage functions and adaptive adversaries

    Full text link
    We put forward a model of action-based randomization mechanisms to analyse quantitative information flow (QIF) under generic leakage functions, and under possibly adaptive adversaries. This model subsumes many of the QIF models proposed so far. Our main contributions include the following: (1) we identify mild general conditions on the leakage function under which it is possible to derive general and significant results on adaptive QIF; (2) we contrast the efficiency of adaptive and non-adaptive strategies, showing that the latter are as efficient as the former in terms of length up to an expansion factor bounded by the number of available actions; (3) we show that the maximum information leakage over strategies, given a finite time horizon, can be expressed in terms of a Bellman equation. This can be used to compute an optimal finite strategy recursively, by resorting to standard methods like backward induction.Comment: Revised and extended version of conference paper with the same title appeared in Proc. of FORTE 2014, LNC

    Partially Symmetric Functions are Efficiently Isomorphism-Testable

    Full text link
    Given a function f: {0,1}^n \to {0,1}, the f-isomorphism testing problem requires a randomized algorithm to distinguish functions that are identical to f up to relabeling of the input variables from functions that are far from being so. An important open question in property testing is to determine for which functions f we can test f-isomorphism with a constant number of queries. Despite much recent attention to this question, essentially only two classes of functions were known to be efficiently isomorphism testable: symmetric functions and juntas. We unify and extend these results by showing that all partially symmetric functions---functions invariant to the reordering of all but a constant number of their variables---are efficiently isomorphism-testable. This class of functions, first introduced by Shannon, includes symmetric functions, juntas, and many other functions as well. We conjecture that these functions are essentially the only functions efficiently isomorphism-testable. To prove our main result, we also show that partial symmetry is efficiently testable. In turn, to prove this result we had to revisit the junta testing problem. We provide a new proof of correctness of the nearly-optimal junta tester. Our new proof replaces the Fourier machinery of the original proof with a purely combinatorial argument that exploits the connection between sets of variables with low influence and intersecting families. Another important ingredient in our proofs is a new notion of symmetric influence. We use this measure of influence to prove that partial symmetry is efficiently testable and also to construct an efficient sample extractor for partially symmetric functions. We then combine the sample extractor with the testing-by-implicit-learning approach to complete the proof that partially symmetric functions are efficiently isomorphism-testable.Comment: 22 page
    corecore