649 research outputs found

    A Note on Power-Laws of Internet Topology

    Full text link
    The three Power-Laws proposed by Faloutsos et al(1999) are important discoveries among many recent works on finding hidden rules in the seemingly chaotic Internet topology. In this note, we want to point out that the first two laws discovered by Faloutsos et al(1999, hereafter, {\it Faloutsos' Power Laws}) are in fact equivalent. That is, as long as any one of them is true, the other can be derived from it, and {\it vice versa}. Although these two laws are equivalent, they provide different ways to measure the exponents of their corresponding power law relations. We also show that these two measures will give equivalent results, but with different error bars. We argue that for nodes of not very large out-degree(ā‰¤32\leq 32 in our simulation), the first Faloutsos' Power Law is superior to the second one in giving a better estimate of the exponent, while for nodes of very large out-degree(>32> 32) the power law relation may not be present, at least for the relation between the frequency of out-degree and node out-degree.Comment: 16 pages, 3 figure

    NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction in SDN

    Full text link
    This paper presents NeuTM, a framework for network Traffic Matrix (TM) prediction based on Long Short-Term Memory Recurrent Neural Networks (LSTM RNNs). TM prediction is defined as the problem of estimating future network traffic matrix from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from data and classify or predict time series with time lags of unknown size. LSTMs have been shown to model long-range dependencies more accurately than conventional RNNs. NeuTM is a LSTM RNN-based framework for predicting TM in large networks. By validating our framework on real-world data from GEEANT network, we show that our model converges quickly and gives state of the art TM prediction performance.Comment: Submitted to NOMS18. arXiv admin note: substantial text overlap with arXiv:1705.0569

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication
    • ā€¦
    corecore