157 research outputs found

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations

    Energy Efficient SWIPT: From Fully-Digital to Hybrid Analog-Digital Beamforming

    Get PDF
    CCBY Simultaneous wireless information and power transfer (SWIPT) enables the transmission of information symbols and energy simultaneously. In this paper, we study the MIMO SWIPT systems with limited RF chains at the base station. We focus on the scenario where there is one information decoder with a target SINR and several separate energy harvesting receivers with harvested energy thresholds. To motivate our energy-efficient hybrid analog-digital beamforming strategy, the fully-digital power minimization problem is firstly analyzed, where we mathematically show that the optimal beamformer consists of only the information beamformer, and derive closed-form beamformers for a number of special cases. Based on this result, we further consider hybrid beamforming and propose an iterative scheme where the analog and digital beamformers are alternately updated. For the proposed scheme, in each iteration we design the analog beamformer by minimizing the difference between the fully-digital beamformer and the hybrid beamformer. Based on our above analysis for fully-digital case, the optimal solution for analog beamformer can be obtained via a geometrical interpretation. We further design the robust beamformers for the proposed schemes, when only imperfect channel state information (CSI) is available. The numerical results show that the proposed iterative designs achieve a close-to-optimal performance with significant gains in the total power consumption over fully-digital SWIPT

    DESIGN AND OPTIMIZATION OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS

    Get PDF
    The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework

    NOMA in Cooperative Communication Systems with Energy-Harvesting Nodes and Wireless Secure Transmission

    Get PDF
    In this paper, non-orthogonal multiple access (NOMA) in cooperative relay system is considered, where a source node communicates with a pair of energy harvesting (EH) user equipments through a multiple antennas relay node. A hybrid protocol is adopted at the relay, in which if the relay can successfully decode the signals, decode- and-forward (DF) protocol will be adopted to forward the signals to the users. Otherwise, amplify-and-forward (AF) protocol will be implemented. Assuming that the users adopt maximal ratio combining (MRC) to combine the received signals in the two cooperative phases, new explicit analytical expressions for the average sum-rate are derived when the relay works in, 1) AF mode, and 2) DF mode, in two scenarios when one user is the stronger in both cooperation phases, and when an alternative user is stronger in each phase. Then, the investigation is extended to the case where the relay is an untrusted node, and cooperative jamming technique is proposed to degrade the ability of the relay to decode the signals and enforce the relay to operate always in AF mode. For the untrusted relay scenario, new analytical expression for the average secrecy rate is derived. Monte Carlo simulations are provided to validate the analysis. The simulation results reveal that the location of the relay is the key parameter to achieve the best performance
    • …
    corecore