20,082 research outputs found

    A Fully Attention-Based Information Retriever

    Full text link
    Recurrent neural networks are now the state-of-the-art in natural language processing because they can build rich contextual representations and process texts of arbitrary length. However, recent developments on attention mechanisms have equipped feedforward networks with similar capabilities, hence enabling faster computations due to the increase in the number of operations that can be parallelized. We explore this new type of architecture in the domain of question-answering and propose a novel approach that we call Fully Attention Based Information Retriever (FABIR). We show that FABIR achieves competitive results in the Stanford Question Answering Dataset (SQuAD) while having fewer parameters and being faster at both learning and inference than rival methods.Comment: Accepted for presentation at the International Joint Conference on Neural Networks (IJCNN) 201

    Non-local Neural Networks

    Full text link
    Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code is available at https://github.com/facebookresearch/video-nonlocal-net .Comment: CVPR 2018, code is available at: https://github.com/facebookresearch/video-nonlocal-ne

    Distance Guided Channel Weighting for Semantic Segmentation

    Full text link
    Recent works have achieved great success in improving the performance of multiple computer vision tasks by capturing features with a high channel number utilizing deep neural networks. However, many channels of extracted features are not discriminative and contain a lot of redundant information. In this paper, we address above issue by introducing the Distance Guided Channel Weighting (DGCW) Module. The DGCW module is constructed in a pixel-wise context extraction manner, which enhances the discriminativeness of features by weighting different channels of each pixel's feature vector when modeling its relationship with other pixels. It can make full use of the high-discriminative information while ignore the low-discriminative information containing in feature maps, as well as capture the long-range dependencies. Furthermore, by incorporating the DGCW module with a baseline segmentation network, we propose the Distance Guided Channel Weighting Network (DGCWNet). We conduct extensive experiments to demonstrate the effectiveness of DGCWNet. In particular, it achieves 81.6% mIoU on Cityscapes with only fine annotated data for training, and also gains satisfactory performance on another two semantic segmentation datasets, i.e. Pascal Context and ADE20K. Code will be available soon at https://github.com/LanyunZhu/DGCWNet
    • …
    corecore