3,316 research outputs found

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201

    Randomly Spread CDMA: Asymptotics via Statistical Physics

    Full text link
    This paper studies randomly spread code-division multiple access (CDMA) and multiuser detection in the large-system limit using the replica method developed in statistical physics. Arbitrary input distributions and flat fading are considered. A generic multiuser detector in the form of the posterior mean estimator is applied before single-user decoding. The generic detector can be particularized to the matched filter, decorrelator, linear MMSE detector, the jointly or the individually optimal detector, and others. It is found that the detection output for each user, although in general asymptotically non-Gaussian conditioned on the transmitted symbol, converges as the number of users go to infinity to a deterministic function of a "hidden" Gaussian statistic independent of the interferers. Thus the multiuser channel can be decoupled: Each user experiences an equivalent single-user Gaussian channel, whose signal-to-noise ratio suffers a degradation due to the multiple-access interference. The uncoded error performance (e.g., symbol-error-rate) and the mutual information can then be fully characterized using the degradation factor, also known as the multiuser efficiency, which can be obtained by solving a pair of coupled fixed-point equations identified in this paper. Based on a general linear vector channel model, the results are also applicable to MIMO channels such as in multiantenna systems.Comment: To be published in IEEE Transactions on Information Theor

    Message-Passing Algorithms for Channel Estimation and Decoding Using Approximate Inference

    Get PDF
    We design iterative receiver schemes for a generic wireless communication system by treating channel estimation and information decoding as an inference problem in graphical models. We introduce a recently proposed inference framework that combines belief propagation (BP) and the mean field (MF) approximation and includes these algorithms as special cases. We also show that the expectation propagation and expectation maximization algorithms can be embedded in the BP-MF framework with slight modifications. By applying the considered inference algorithms to our probabilistic model, we derive four different message-passing receiver schemes. Our numerical evaluation demonstrates that the receiver based on the BP-MF framework and its variant based on BP-EM yield the best compromise between performance, computational complexity and numerical stability among all candidate algorithms.Comment: Accepted for publication in the Proceedings of 2012 IEEE International Symposium on Information Theor
    • …
    corecore