899 research outputs found

    Evaluating the Usability of Automatically Generated Captions for People who are Deaf or Hard of Hearing

    Full text link
    The accuracy of Automated Speech Recognition (ASR) technology has improved, but it is still imperfect in many settings. Researchers who evaluate ASR performance often focus on improving the Word Error Rate (WER) metric, but WER has been found to have little correlation with human-subject performance on many applications. We propose a new captioning-focused evaluation metric that better predicts the impact of ASR recognition errors on the usability of automatically generated captions for people who are Deaf or Hard of Hearing (DHH). Through a user study with 30 DHH users, we compared our new metric with the traditional WER metric on a caption usability evaluation task. In a side-by-side comparison of pairs of ASR text output (with identical WER), the texts preferred by our new metric were preferred by DHH participants. Further, our metric had significantly higher correlation with DHH participants' subjective scores on the usability of a caption, as compared to the correlation between WER metric and participant subjective scores. This new metric could be used to select ASR systems for captioning applications, and it may be a better metric for ASR researchers to consider when optimizing ASR systems.Comment: 10 pages, 8 figures, published in ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '17

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio
    • …
    corecore