9 research outputs found

    A novel probabilistic data association based MIMO detector using joint detection of consecutive symbol vectors

    No full text
    A new probabilistic data association (PDA) approach is proposed for symbol detection in spatial multiplexing multiple-input multiple-output (MIMO) systems. By designing a joint detection (JD) structure for consecutive symbol vectors in the same transmit burst, more a priori information is exploited when updating the estimated posterior marginal probabilities for each symbol per iteration. Therefore the proposed PDA detector (denoted as PDA-JD detector) outperforms the conventional PDA detectors in the context of correlated input bit streams. Moreover, the conventional PDA detectors are shown to be a special case of the PDA-JD detector. Simulations and analyses are given to demonstrate the effectiveness of the new method

    Base station cooperation in MIMO-aided multi-user multi-cell systems employing distributed probabilistic data association based soft reception

    No full text
    Inter-cell co-channel interference (CCI) mitigation is investigated in the context of cellular systems relying on dense frequency reuse. A distributed Base Station (BS) cooperation aided soft reception scheme using the Probabilistic Data Association (PDA) algorithm and Soft Combining (SC) is proposed for the uplink of multi-user multi-cell MIMO systems. The realistic hexagonal cellular model relying on unity Frequency Reuse (FR) is considered, where both the BSs and the Mobile Stations (MSs) are equipped with multiple antennas. Local cooperation based message passing is used instead of a global message passing chain for the sake of reducing the backhaul traffic. The PDA algorithm is employed as a low complexity solution for producing soft information, which facilitates the employment of SC at the individual BSs in order to generate the final soft decision metric. Our simulations and analysis demonstrate that despite its low additional complexity and backhaul traffic, the proposed distributed PDA-aided reception scheme significantly outperforms the conventional non-cooperative bench markers

    Distributed probabilistic-data-association-based soft reception employing base station cooperation in MIMO-aided multiuser multicell systems

    No full text
    Intercell cochannel interference (CCI) mitigation is investigated in the context of cellular systems relying on dense frequency reuse (FR). A distributed base-station (BS)-cooperation-aided soft reception scheme using the probabilistic data association (PDA) algorithm and soft combining (SC) is proposed for the uplink of multiuser multicell MIMO systems. The realistic 19-cell hexagonal cellular model relying on unity FR is considered, where both the BSs and the mobile stations (MSs) are equipped with multiple antennas. Local-cooperation-based message passing is used, instead of a global message passing chain for the sake of reducing the backhaul traffic. The PDA algorithm is employed as a low-complexity solution for producing soft information, which facilitates the employment of SC at the individual BSs to generate the final soft decision metric. Our simulations and analysis demonstrate that, despite its low additional complexity and backhaul traffic, the proposed distributed PDA-aided SC (DPDA-SC) reception scheme significantly outperforms the conventional noncooperative benchmarkers. Furthermore, since only the index of the possible discrete value of the quantized converged soft information has to be exchanged for SC in practice, the proposed DPDA-SC scheme is relatively robust to the quantization errors of the soft information exchanged. As a beneficial result, the backhaul traffic is dramatically reduced at negligible performance degradation

    Recursive LMMSE-Based Iterative Soft Interference Cancellation for MIMO Systems to Save Computations and Memories

    Full text link
    Firstly, a reordered description is given for the linear minimum mean square error (LMMSE)-based iterative soft interference cancellation (ISIC) detection process for Mutipleinput multiple-output (MIMO) wireless communication systems, which is based on the equivalent channel matrix. Then the above reordered description is applied to compare the detection process for LMMSE-ISIC with that for the hard decision (HD)-based ordered successive interference cancellation (OSIC) scheme, to draw the conclusion that the former is the extension of the latter. Finally, the recursive scheme for HD-OSIC with reduced complexity and memory saving is extended to propose the recursive scheme for LMMSE-ISIC, where the required computations and memories are reduced by computing the filtering bias and the estimate from the Hermitian inverse matrix and the symbol estimate vector, and updating the Hermitian inverse matrix and the symbol estimate vector efficiently. Assume N transmitters and M (no less than N) receivers in the MIMO system. Compared to the existing low-complexity LMMSE-ISIC scheme, the proposed recursive LMMSE-ISIC scheme requires no more than 1/6 computations and no more than 1/5 memory units

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201
    corecore