65,924 research outputs found

    Hamiltonian Dynamics of Yang-Mills Fields on a Lattice

    Get PDF
    We review recent results from studies of the dynamics of classical Yang-Mills fields on a lattice. We discuss the numerical techniques employed in solving the classical lattice Yang-Mills equations in real time, and present results exhibiting the universal chaotic behavior of nonabelian gauge theories. The complete spectrum of Lyapunov exponents is determined for the gauge group SU(2). We survey results obtained for the SU(3) gauge theory and other nonlinear field theories. We also discuss the relevance of these results to the problem of thermalization in gauge theories.Comment: REVTeX, 51 pages, 20 figure

    Dual theory of the superfluid-Bose glass transition in disordered Bose-Hubbard model in one and two dimensions

    Full text link
    I study the zero temperature phase transition between superfluid and insulating ground states of the Bose-Hubbard model in a random chemical potential and at large integer average number of particles per site. Duality transformation maps the pure Bose-Hubbard model onto the sine-Gordon theory in one dimension (1D), and onto the three dimensional Higgs electrodynamics in two dimensions (2D). In 1D the random chemical potential in dual theory couples to the space derivative of the dual field, and appears as a random magnetic field along the imaginary time direction in 2D. I show that the transition from the superfluid state in both 1D and 2D is always controlled by the random critical point. This arises due to a coupling constant in the dual theory with replicas which becomes generated at large distances by the random chemical potential, and represents a relevant perturbation at the pure superfluid-Mott insulator fixed point. At large distances the dual theory in 1D becomes equivalent to the Haldane's macroscopic representation of disordered quantum fluid, where the generated term is identified with random backscattering. In 2D the generated coupling corresponds to the random mass of the complex field which represents vortex loops. I calculate the critical exponents at the superfluid-Bose glass fixed point in 2D to be \nu=1.38 and z=1.93, and the universal conductivity at the transition \sigma_c = 0.26 e_{*}^2 /h, using the one-loop field-theoretic renormalization group in fixed dimension.Comment: 25 pages, 6 Postscript figures, LaTex, references updated, typos corrected, final version to appear in Phys. Rev. B, June 1, 199

    On the existence and scaling of structure functions in turbulence according to the data

    Full text link
    We sample a velocity field that has an inertial spectrum and a skewness that matches experimental data. In particular, we compute a self-consistent correction to the Kolmogorov exponent and find that for our model it is zero. We find that the higher order structure functions diverge for orders larger than a certain threshold, as theorized in some recent work. The significance of the results for the statistical theory of homogeneous turbulence is reviewed.Comment: 15 pages, 5 figures, to appear in PNA

    SWATI: Synthesizing Wordlengths Automatically Using Testing and Induction

    Full text link
    In this paper, we present an automated technique SWATI: Synthesizing Wordlengths Automatically Using Testing and Induction, which uses a combination of Nelder-Mead optimization based testing, and induction from examples to automatically synthesize optimal fixedpoint implementation of numerical routines. The design of numerical software is commonly done using floating-point arithmetic in design-environments such as Matlab. However, these designs are often implemented using fixed-point arithmetic for speed and efficiency reasons especially in embedded systems. The fixed-point implementation reduces implementation cost, provides better performance, and reduces power consumption. The conversion from floating-point designs to fixed-point code is subject to two opposing constraints: (i) the word-width of fixed-point types must be minimized, and (ii) the outputs of the fixed-point program must be accurate. In this paper, we propose a new solution to this problem. Our technique takes the floating-point program, specified accuracy and an implementation cost model and provides the fixed-point program with specified accuracy and optimal implementation cost. We demonstrate the effectiveness of our approach on a set of examples from the domain of automated control, robotics and digital signal processing

    Zero-Temperature Phase Transitions of Antiferromagnetic Ising Model of General Spin on a Triangular Lattice

    Full text link
    We map the ground-state ensemble of antiferromagnetic Ising model of spin-S on a triangular lattice to an interface model whose entropic fluctuations are proposed to be described by an effective Gaussian free energy, which enables us to calculate the critical exponents of various operators in terms of the stiffness constant of the interface. Monte Carlo simulations for the ground-state ensemble utilizing this interfacial representation are performed to study both the dynamical and the static properties of the model. This method yields more accurate numerical results for the critical exponents. By varying the spin magnitude in the model, we find that the model exhibits three phases with a Kosterlitz-Thouless phase transition at 3/2<S_{KT}<2 and a locking phase transition at 5/2 < S_L \leq 3. The phase diagram at finite temperatures is also discussed.Comment: 15 pages, LaTeX; 10 figures in PostScript files; The revised version appears in PRB (see Journal-ref). New electronic address of first author, [email protected]

    Simulation of Field Theories in Wavelet Representation

    Get PDF
    The field is expanded in a wavelet series and the wavelet coefficients are varied in a simulation of the 2D Ď•4\phi^4 field theory. The drastically reduced autocorrelations result in a substantial decrease of computing requirements, compared to those in local Metropolis simulations. A large part of the improvement is shown to be the result of an additional freedom in the choice of the allowed range of change at the Metropolis update of wavelet components, namely the range can be optimized independently for all wavelet sizes.Comment: 10 pages, LaTeX with 8 figures, Swansea preprint SWAT/3
    • …
    corecore