2 research outputs found

    On the Radiality Constraints for Distribution System Restoration and Reconfiguration Problems

    Full text link
    Radiality constraints are involved in both distribution system restoration and reconfiguration problems. However, a set of widely used radiality constraints, i.e., the spanning tree (ST) constraints, has its limitations which have not been well recognized. In this letter, the limitation of the ST constraints is analyzed and an effective set of constraints, referred to as the single-commodity flow constraints, is presented. Furthermore, a combined set of constraints is proposed and case studies indicate that the combined constraints can gain computational efficiency in the reconfiguration problem. Recommendations on the use of radiality constraints are also provided.Comment: 4 pages, 3 figures, IEEE PES letter

    Creating Realistic Power Distribution Networks using Interdependent Road Infrastructure

    Full text link
    It is well known that physical interdependencies exist between networked civil infrastructures such as transportation and power system networks. In order to analyze complex nonlinear correlations between such networks, datasets pertaining to such real infrastructures are required. However, such data are not readily available due to their proprietary nature. This work proposes a methodology to generate realistic synthetic power distribution networks for a given geographical region. A network generated in this manner is not the actual distribution system, but its functionality is very similar to the real distribution network. The synthetic network connects high voltage substations to individual residential consumers through primary and secondary distribution networks. Here, the distribution network is generated by solving an optimization problem which minimizes the overall length of the network subject to structural and power flow constraints. This work also incorporates identification of long high voltage feeders originating from substations and connecting remotely situated customers in rural geographic locations while maintaining voltage regulation within acceptable limits. The proposed methodology is applied to the state of Virginia and creates synthetic distribution networks which are validated by comparing them to actual power distribution networks at the same location.Comment: Accepted for presentation at the IEEE Big Data Conference 202
    corecore