1,455 research outputs found

    Estimation of subgraph density in noisy networks

    Full text link
    While it is common practice in applied network analysis to report various standard network summary statistics, these numbers are rarely accompanied by uncertainty quantification. Yet any error inherent in the measurements underlying the construction of the network, or in the network construction procedure itself, necessarily must propagate to any summary statistics reported. Here we study the problem of estimating the density of an arbitrary subgraph, given a noisy version of some underlying network as data. Under a simple model of network error, we show that consistent estimation of such densities is impossible when the rates of error are unknown and only a single network is observed. Accordingly, we develop method-of-moment estimators of network subgraph densities and error rates for the case where a minimal number of network replicates are available. These estimators are shown to be asymptotically normal as the number of vertices increases to infinity. We also provide confidence intervals for quantifying the uncertainty in these estimates based on the asymptotic normality. To construct the confidence intervals, a new and non-standard bootstrap method is proposed to compute asymptotic variances, which is infeasible otherwise. We illustrate the proposed methods in the context of gene coexpression networks

    Complex network analysis and nonlinear dynamics

    Get PDF
    This chapter aims at reviewing complex network and nonlinear dynamical models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary introduces some applications of complex networks to economics, finance, epidemic spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issue

    Performance enhancement of surface codes via recursive MWPM decoding

    Full text link
    The minimum weight perfect matching (MWPM) decoder is the standard decoding strategy for quantum surface codes. However, it suffers a harsh decrease in performance when subjected to biased or non-identical quantum noise. In this work, we modify the conventional MWPM decoder so that it considers the biases, the non-uniformities and the relationship between XX, YY and ZZ errors of the constituent qubits of a given surface code. Our modified approach, which we refer to as the recursive MWPM decoder, obtains an 18%18\% improvement in the probability threshold pthp_{th} under depolarizing noise. We also obtain significant performance improvements when considering biased noise and independent non-identically distributed (i.ni.d.) error models derived from measurements performed on state-of-the-art quantum processors. In fact, when subjected to i.ni.d. noise, the recursive MWPM decoder yields a performance improvement of 105.5%105.5\% over the conventional MWPM strategy and, in some cases, it even surpasses the performance obtained over the well-known depolarizing channel
    • …
    corecore