2 research outputs found

    On the Profitability of Selfish Mining Against Multiple Difficulty Adjustment Algorithms

    Get PDF
    The selfish mining attack allows cryptocurrency miners to mine more than their fair share of blocks, stealing revenue from other miners while reducing the overall security of payments. This malicious strategy has been extensively studied in Bitcoin, but far less attention has been paid to how the strategy may impact other cryptocurrencies. Because selfish mining is an attack against the difficulty adjustment algorithm (DAA) of a cryptocurrency, it may have a different effect when used on coins with different DAAs. In this work, we study the degree to which selfish mining can increase the revenue of miners for a wider variety of cryptocurrencies than have been studied before, including Bitcoin, Litecoin, Bitcoin Cash, Dash, Monero, and Zcash. To do so, we generalize the selfish mining strategy to blockchains with variable difficulty, and use simulations to measure how profitable the strategy is. We find that the other cryptocurrencies under consideration are far more susceptible to selfish mining than Bitcoin is, and that the strategy is profitable for miners with a lower hash rate. We also show that by dishonestly reporting block timestamps, selfish miners can generate enormously disproportionate revenues up to 2.5 times larger than they would through honest mining for some DAAs. For each DAA, we consider what happens when parameters are changed, and suggest parameter sets that would improve the algorithm’s resilience against selfish mining

    JaxNet: Scalable Blockchain Network

    Get PDF
    Today's world is organized based on merit and value. A single global currency that's decentralized is needed for a global economy. Bitcoin is a partial solution to this need, however it suffers from scalability problems which prevent it from being mass-adopted. Also, the deflationary nature of bitcoin motivates people to hoard and speculate on them instead of using them for day to day transactions. We propose a scalable, decentralized cryptocurrency that is based on Proof of Work.The solution involves having parallel chains in a closed network using a mechanism which rewards miners proportional to their effort in maintaining the network.The proposed design introduces a novel approach for solving scalability problem in blockchain network based on merged mining.Comment: 55 pages. 10 figure
    corecore