29,607 research outputs found

    Device-independent tests of quantum measurements

    Get PDF
    We consider the problem of characterizing the set of input-output correlations that can be generated by an arbitrarily given quantum measurement. Our main result is to provide a closed-form, full characterization of such a set for any qubit measurement, and to discuss its geometrical interpretation. As applications, we further specify our results to the cases of real and complex symmetric, informationally complete measurements and mutually unbiased bases of a qubit, in the presence of isotropic noise. Our results provide the optimal device-independent tests of quantum measurements.Comment: 5 + 2 pages, no figure

    Quantum leakage detection using a model-independent dimension witness

    Full text link
    Users of quantum computers must be able to confirm they are indeed functioning as intended, even when the devices are remotely accessed. In particular, if the Hilbert space dimension of the components are not as advertised -- for instance if the qubits suffer leakage -- errors can ensue and protocols may be rendered insecure. We refine the method of delayed vectors, adapted from classical chaos theory to quantum systems, and apply it remotely on the IBMQ platform -- a quantum computer composed of transmon qubits. The method witnesses, in a model-independent fashion, dynamical signatures of higher-dimensional processes. We present evidence, under mild assumptions, that the IBMQ transmons suffer state leakage, with a pp value no larger than 5Γ—10βˆ’45{\times}10^{-4} under a single qubit operation. We also estimate the number of shots necessary for revealing leakage in a two-qubit system.Comment: 11 pages, 5 figure

    The Quantum PCP Conjecture

    Full text link
    The classical PCP theorem is arguably the most important achievement of classical complexity theory in the past quarter century. In recent years, researchers in quantum computational complexity have tried to identify approaches and develop tools that address the question: does a quantum version of the PCP theorem hold? The story of this study starts with classical complexity and takes unexpected turns providing fascinating vistas on the foundations of quantum mechanics, the global nature of entanglement and its topological properties, quantum error correction, information theory, and much more; it raises questions that touch upon some of the most fundamental issues at the heart of our understanding of quantum mechanics. At this point, the jury is still out as to whether or not such a theorem holds. This survey aims to provide a snapshot of the status in this ongoing story, tailored to a general theory-of-CS audience.Comment: 45 pages, 4 figures, an enhanced version of the SIGACT guest column from Volume 44 Issue 2, June 201
    • …
    corecore