595 research outputs found

    Riemannian Optimization via Frank-Wolfe Methods

    Full text link
    We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a critical point for nonconvex objectives. We also present a practical setting under which RFW can attain a linear convergence rate. As a concrete example, we specialize Rfw to the manifold of positive definite matrices and apply it to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii) computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex interval constraints, for which we show that the Riemannian "linear oracle" required by RFW admits a closed-form solution; this result may be of independent interest. We further specialize RFW to the special orthogonal group and show that here too, the Riemannian "linear oracle" can be solved in closed form. Here, we describe an application to the synchronization of data matrices (Procrustes problem). We complement our theoretical results with an empirical comparison of Rfw against state-of-the-art Riemannian optimization methods and observe that RFW performs competitively on the task of computing Riemannian centroids.Comment: Under Review. Largely revised version, including an extended experimental section and an application to the special orthogonal group and the Procrustes proble

    Simple Complexity Analysis of Simplified Direct Search

    Get PDF
    We consider the problem of unconstrained minimization of a smooth function in the derivative-free setting using. In particular, we propose and study a simplified variant of the direct search method (of direction type), which we call simplified direct search (SDS). Unlike standard direct search methods, which depend on a large number of parameters that need to be tuned, SDS depends on a single scalar parameter only. Despite relevant research activity in direct search methods spanning several decades, complexity guarantees---bounds on the number of function evaluations needed to find an approximate solution---were not established until very recently. In this paper we give a surprisingly brief and unified analysis of SDS for nonconvex, convex and strongly convex functions. We match the existing complexity results for direct search in their dependence on the problem dimension (nn) and error tolerance (ϵ\epsilon), but the overall bounds are simpler, easier to interpret, and have better dependence on other problem parameters. In particular, we show that for the set of directions formed by the standard coordinate vectors and their negatives, the number of function evaluations needed to find an ϵ\epsilon-solution is O(n2/ϵ)O(n^2 /\epsilon) (resp. O(n2log(1/ϵ))O(n^2 \log(1/\epsilon))) for the problem of minimizing a convex (resp. strongly convex) smooth function. In the nonconvex smooth case, the bound is O(n2/ϵ2)O(n^2/\epsilon^2), with the goal being the reduction of the norm of the gradient below ϵ\epsilon.Comment: 21 pages, 5 algorithms, 1 tabl
    corecore