9,857 research outputs found

    Weighted Schatten pp-Norm Minimization for Image Denoising and Background Subtraction

    Full text link
    Low rank matrix approximation (LRMA), which aims to recover the underlying low rank matrix from its degraded observation, has a wide range of applications in computer vision. The latest LRMA methods resort to using the nuclear norm minimization (NNM) as a convex relaxation of the nonconvex rank minimization. However, NNM tends to over-shrink the rank components and treats the different rank components equally, limiting its flexibility in practical applications. We propose a more flexible model, namely the Weighted Schatten pp-Norm Minimization (WSNM), to generalize the NNM to the Schatten pp-norm minimization with weights assigned to different singular values. The proposed WSNM not only gives better approximation to the original low-rank assumption, but also considers the importance of different rank components. We analyze the solution of WSNM and prove that, under certain weights permutation, WSNM can be equivalently transformed into independent non-convex lpl_p-norm subproblems, whose global optimum can be efficiently solved by generalized iterated shrinkage algorithm. We apply WSNM to typical low-level vision problems, e.g., image denoising and background subtraction. Extensive experimental results show, both qualitatively and quantitatively, that the proposed WSNM can more effectively remove noise, and model complex and dynamic scenes compared with state-of-the-art methods.Comment: 13 pages, 11 figure

    Nonconvex Nonsmooth Low-Rank Minimization via Iteratively Reweighted Nuclear Norm

    Full text link
    The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm based relaxed convex problem usually leads to a suboptimal solution of the original rank minimization problem. In this paper, we propose to perform a family of nonconvex surrogates of L0L_0-norm on the singular values of a matrix to approximate the rank function. This leads to a nonconvex nonsmooth minimization problem. Then we propose to solve the problem by Iteratively Reweighted Nuclear Norm (IRNN) algorithm. IRNN iteratively solves a Weighted Singular Value Thresholding (WSVT) problem, which has a closed form solution due to the special properties of the nonconvex surrogate functions. We also extend IRNN to solve the nonconvex problem with two or more blocks of variables. In theory, we prove that IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthesized data and real images demonstrate that IRNN enhances the low-rank matrix recovery compared with state-of-the-art convex algorithms

    Generalized Nonconvex Nonsmooth Low-Rank Minimization

    Full text link
    As surrogate functions of L0L_0-norm, many nonconvex penalty functions have been proposed to enhance the sparse vector recovery. It is easy to extend these nonconvex penalty functions on singular values of a matrix to enhance low-rank matrix recovery. However, different from convex optimization, solving the nonconvex low-rank minimization problem is much more challenging than the nonconvex sparse minimization problem. We observe that all the existing nonconvex penalty functions are concave and monotonically increasing on [0,)[0,\infty). Thus their gradients are decreasing functions. Based on this property, we propose an Iteratively Reweighted Nuclear Norm (IRNN) algorithm to solve the nonconvex nonsmooth low-rank minimization problem. IRNN iteratively solves a Weighted Singular Value Thresholding (WSVT) problem. By setting the weight vector as the gradient of the concave penalty function, the WSVT problem has a closed form solution. In theory, we prove that IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthetic data and real images demonstrate that IRNN enhances the low-rank matrix recovery compared with state-of-the-art convex algorithms.Comment: IEEE International Conference on Computer Vision and Pattern Recognition, 201

    Partial Sum Minimization of Singular Values in Robust PCA: Algorithm and Applications

    Full text link
    Robust Principal Component Analysis (RPCA) via rank minimization is a powerful tool for recovering underlying low-rank structure of clean data corrupted with sparse noise/outliers. In many low-level vision problems, not only it is known that the underlying structure of clean data is low-rank, but the exact rank of clean data is also known. Yet, when applying conventional rank minimization for those problems, the objective function is formulated in a way that does not fully utilize a priori target rank information about the problems. This observation motivates us to investigate whether there is a better alternative solution when using rank minimization. In this paper, instead of minimizing the nuclear norm, we propose to minimize the partial sum of singular values, which implicitly encourages the target rank constraint. Our experimental analyses show that, when the number of samples is deficient, our approach leads to a higher success rate than conventional rank minimization, while the solutions obtained by the two approaches are almost identical when the number of samples is more than sufficient. We apply our approach to various low-level vision problems, e.g. high dynamic range imaging, motion edge detection, photometric stereo, image alignment and recovery, and show that our results outperform those obtained by the conventional nuclear norm rank minimization method.Comment: Accepted in Transactions on Pattern Analysis and Machine Intelligence (TPAMI). To appea
    corecore