6,318 research outputs found

    Explicit MBR All-Symbol Locality Codes

    Full text link
    Node failures are inevitable in distributed storage systems (DSS). To enable efficient repair when faced with such failures, two main techniques are known: Regenerating codes, i.e., codes that minimize the total repair bandwidth; and codes with locality, which minimize the number of nodes participating in the repair process. This paper focuses on regenerating codes with locality, using pre-coding based on Gabidulin codes, and presents constructions that utilize minimum bandwidth regenerating (MBR) local codes. The constructions achieve maximum resilience (i.e., optimal minimum distance) and have maximum capacity (i.e., maximum rate). Finally, the same pre-coding mechanism can be combined with a subclass of fractional-repetition codes to enable maximum resilience and repair-by-transfer simultaneously

    Replication based storage systems with local repair

    Get PDF
    We consider the design of regenerating codes for distributed storage systems that enjoy the property of local, exact and uncoded repair, i.e., (a) upon failure, a node can be regenerated by simply downloading packets from the surviving nodes and (b) the number of surviving nodes contacted is strictly smaller than the number of nodes that need to be contacted for reconstructing the stored file. Our codes consist of an outer MDS code and an inner fractional repetition code that specifies the placement of the encoded symbols on the storage nodes. For our class of codes, we identify the tradeoff between the local repair property and the minimum distance. We present codes based on graphs of high girth, affine resolvable designs and projective planes that meet the minimum distance bound for specific choices of file sizes

    Fractional repetition codes with flexible repair from combinatorial designs

    Get PDF
    Fractional repetition (FR) codes are a class of regenerating codes for distributed storage systems with an exact (table-based) repair process that is also uncoded, i.e., upon failure, a node is regenerated by simply downloading packets from the surviving nodes. In our work, we present constructions of FR codes based on Steiner systems and resolvable combinatorial designs such as affine geometries, Hadamard designs and mutually orthogonal Latin squares. The failure resilience of our codes can be varied in a simple manner. We construct codes with normalized repair bandwidth (β\beta) strictly larger than one; these cannot be obtained trivially from codes with β=1\beta = 1. Furthermore, we present the Kronecker product technique for generating new codes from existing ones and elaborate on their properties. FR codes with locality are those where the repair degree is smaller than the number of nodes contacted for reconstructing the stored file. For these codes we establish a tradeoff between the local repair property and failure resilience and construct codes that meet this tradeoff. Much of prior work only provided lower bounds on the FR code rate. In our work, for most of our constructions we determine the code rate for certain parameter ranges.Comment: 27 pages in IEEE two-column format. IEEE Transactions on Information Theory (to appear

    HFR Code: A Flexible Replication Scheme for Cloud Storage Systems

    Full text link
    Fractional repetition (FR) codes are a family of repair-efficient storage codes that provide exact and uncoded node repair at the minimum bandwidth regenerating point. The advantageous repair properties are achieved by a tailor-made two-layer encoding scheme which concatenates an outer maximum-distance-separable (MDS) code and an inner repetition code. In this paper, we generalize the application of FR codes and propose heterogeneous fractional repetition (HFR) code, which is adaptable to the scenario where the repetition degrees of coded packets are different. We provide explicit code constructions by utilizing group divisible designs, which allow the design of HFR codes over a large range of parameters. The constructed codes achieve the system storage capacity under random access repair and have multiple repair alternatives for node failures. Further, we take advantage of the systematic feature of MDS codes and present a novel design framework of HFR codes, in which storage nodes can be wisely partitioned into clusters such that data reconstruction time can be reduced when contacting nodes in the same cluster.Comment: Accepted for publication in IET Communications, Jul. 201
    corecore