90 research outputs found

    A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game

    Full text link
    We prove a tight lower bound on the asymptotic performance ratio ρ\rho of the bounded space online dd-hypercube bin packing problem, solving an open question raised in 2005. In the classic dd-hypercube bin packing problem, we are given a sequence of dd-dimensional hypercubes and we have an unlimited number of bins, each of which is a dd-dimensional unit hypercube. The goal is to pack (orthogonally) the given hypercubes into the minimum possible number of bins, in such a way that no two hypercubes in the same bin overlap. The bounded space online dd-hypercube bin packing problem is a variant of the dd-hypercube bin packing problem, in which the hypercubes arrive online and each one must be packed in an open bin without the knowledge of the next hypercubes. Moreover, at each moment, only a constant number of open bins are allowed (whenever a new bin is used, it is considered open, and it remains so until it is considered closed, in which case, it is not allowed to accept new hypercubes). Epstein and van Stee [SIAM J. Comput. 35 (2005), no. 2, 431-448] showed that ρ\rho is Ω(logd)\Omega(\log d) and O(d/logd)O(d/\log d), and conjectured that it is Θ(logd)\Theta(\log d). We show that ρ\rho is in fact Θ(d/logd)\Theta(d/\log d). To obtain this result, we elaborate on some ideas presented by those authors, and go one step further showing how to obtain better (offline) packings of certain special instances for which one knows how many bins any bounded space algorithm has to use. Our main contribution establishes the existence of such packings, for large enough dd, using probabilistic arguments. Such packings also lead to lower bounds for the prices of anarchy of the selfish dd-hypercube bin packing game. We present a lower bound of Ω(d/logd)\Omega(d/\log d) for the pure price of anarchy of this game, and we also give a lower bound of Ω(logd)\Omega(\log d) for its strong price of anarchy

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c
    corecore