12,365 research outputs found

    Geometry of the Wiman Pencil, I: Algebro-Geometric Aspects

    Full text link
    In 1981 W.L. Edge discovered and studied a pencil C\mathcal{C} of highly symmetric genus 66 projective curves with remarkable properties. Edge's work was based on an 1895 paper of A. Wiman. Both papers were written in the satisfying style of 19th century algebraic geometry. In this paper and its sequel [FL], we consider C\mathcal{C} from a more modern, conceptual perspective, whereby explicit equations are reincarnated as geometric objects.Comment: Minor revisions. Now 49 pages, 4 figures. To appear in European Journal of Mathematics, special issue in memory of W.L. Edg

    Lie Markov models with purine/pyrimidine symmetry

    Get PDF
    Continuous-time Markov chains are a standard tool in phylogenetic inference. If homogeneity is assumed, the chain is formulated by specifying time-independent rates of substitutions between states in the chain. In applications, there are usually extra constraints on the rates, depending on the situation. If a model is formulated in this way, it is possible to generalise it and allow for an inhomogeneous process, with time-dependent rates satisfying the same constraints. It is then useful to require that there exists a homogeneous average of this inhomogeneous process within the same model. This leads to the definition of "Lie Markov models", which are precisely the class of models where such an average exists. These models form Lie algebras and hence concepts from Lie group theory are central to their derivation. In this paper, we concentrate on applications to phylogenetics and nucleotide evolution, and derive the complete hierarchy of Lie Markov models that respect the grouping of nucleotides into purines and pyrimidines -- that is, models with purine/pyrimidine symmetry. We also discuss how to handle the subtleties of applying Lie group methods, most naturally defined over the complex field, to the stochastic case of a Markov process, where parameter values are restricted to be real and positive. In particular, we explore the geometric embedding of the cone of stochastic rate matrices within the ambient space of the associated complex Lie algebra. The whole list of Lie Markov models with purine/pyrimidine symmetry is available at http://www.pagines.ma1.upc.edu/~jfernandez/LMNR.pdf.Comment: 32 page

    All degree six local unitary invariants of k qudits

    Full text link
    We give explicit index-free formulae for all the degree six (and also degree four and two) algebraically independent local unitary invariant polynomials for finite dimensional k-partite pure and mixed quantum states. We carry out this by the use of graph-technical methods, which provides illustrations for this abstract topic.Comment: 18 pages, 6 figures, extended version. Comments are welcom

    Periodic-Orbit Theory of Universality in Quantum Chaos

    Full text link
    We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory, that full classical chaos is paralleled by quantum energy spectra with universal spectral statistics, in agreement with random-matrix theory. For dynamics from all three Wigner-Dyson symmetry classes, we calculate the small-time spectral form factor K(Ď„)K(\tau) as power series in the time Ď„\tau. Each term Ď„n\tau^n of that series is provided by specific families of pairs of periodic orbits. The contributing pairs are classified in terms of close self-encounters in phase space. The frequency of occurrence of self-encounters is calculated by invoking ergodicity. Combinatorial rules for building pairs involve non-trivial properties of permutations. We show our series to be equivalent to perturbative implementations of the non-linear sigma models for the Wigner-Dyson ensembles of random matrices and for disordered systems; our families of orbit pairs are one-to-one with Feynman diagrams known from the sigma model.Comment: 31 pages, 17 figure

    Geometry of the Wiman Pencil, I: Algebro-Geometric Aspects

    Full text link
    In 1981 W.L. Edge discovered and studied a pencil C\mathcal{C} of highly symmetric genus 66 projective curves with remarkable properties. Edge's work was based on an 1895 paper of A. Wiman. Both papers were written in the satisfying style of 19th century algebraic geometry. In this paper and its sequel [FL], we consider C\mathcal{C} from a more modern, conceptual perspective, whereby explicit equations are reincarnated as geometric objects.Comment: Minor revisions. Now 49 pages, 4 figures. To appear in European Journal of Mathematics, special issue in memory of W.L. Edg

    Permutation Orbifold of N=2 Supersymmetric Minimal Models

    Get PDF
    In this paper we apply the previously derived formalism of permutation orbifold conformal field theories to N=2 supersymmetric minimal models. By interchanging extensions and permutations of the factors we find a very interesting structure relating various conformal field theories that seems not to be known in literature. Moreover, unexpected exceptional simple currents arise in the extended permuted models, coming from off-diagonal fields. In a few situations they admit fixed points that must be resolved. We determine the complete CFT data with all fixed point resolution matrices for all simple currents of all Z_2-permutations orbifolds of all minimal N=2 models with k\neq 2 mod 4.Comment: 48 page

    On the Black-Hole/Qubit Correspondence

    Full text link
    The entanglement classification of four qubits is related to the extremal black holes of the 4-dimensional STU model via a time-like reduction to three dimensions. This correspondence is generalised to the entanglement classification of a very special four-way entanglement of eight qubits and the black holes of the maximally supersymmetric N = 8 and exceptional magic N = 2 supergravity theories.Comment: 32 pages, very minor changes at the start of Sec. 4.1. Version to appear in The European Physical Journal - Plu
    • …
    corecore