10,882 research outputs found

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    The Bernardi process and torsor structures on spanning trees

    Full text link
    Let G be a ribbon graph, i.e., a connected finite graph G together with a cyclic ordering of the edges around each vertex. By adapting a construction due to O. Bernardi, we associate to any pair (v,e) consisting of a vertex v and an edge e adjacent to v a bijection between spanning trees of G and elements of the set Pic^g(G) of degree g divisor classes on G, where g is the genus of G. Using the natural action of the Picard group Pic^0(G) on Pic^g(G), we show that the Bernardi bijection gives rise to a simply transitive action \beta_v of Pic^0(G) on the set of spanning trees which does not depend on the choice of e. A plane graph has a natural ribbon structure (coming from the counterclockwise orientation of the plane), and in this case we show that \beta_v is independent of v as well. Thus for plane graphs, the set of spanning trees is naturally a torsor for the Picard group. Conversely, we show that if \beta_v is independent of v then G together with its ribbon structure is planar. We also show that the natural action of Pic^0(G) on spanning trees of a plane graph is compatible with planar duality. These findings are formally quite similar to results of Holroyd et al. and Chan-Church-Grochow, who used rotor-routing to construct an action r_v of Pic^0(G) on the spanning trees of a ribbon graph G, which they show is independent of v if and only if G is planar. It is therefore natural to ask how the two constructions are related. We prove that \beta_v = r_v for all vertices v of G when G is a planar ribbon graph, i.e. the two torsor structures (Bernardi and rotor-routing) on the set of spanning trees coincide. In particular, it follows that the rotor-routing torsor is compatible with planar duality. We conjecture that for every non-planar ribbon graph G, there exists a vertex v with \beta_v \neq r_v.Comment: 25 pages. v2: numerous revisions based on referee comments. v3: substantial additional revisions; final version to appear in IMR

    Sandpiles, spanning trees, and plane duality

    Full text link
    Let G be a connected, loopless multigraph. The sandpile group of G is a finite abelian group associated to G whose order is equal to the number of spanning trees in G. Holroyd et al. used a dynamical process on graphs called rotor-routing to define a simply transitive action of the sandpile group of G on its set of spanning trees. Their definition depends on two pieces of auxiliary data: a choice of a ribbon graph structure on G, and a choice of a root vertex. Chan, Church, and Grochow showed that if G is a planar ribbon graph, it has a canonical rotor-routing action associated to it, i.e., the rotor-routing action is actually independent of the choice of root vertex. It is well-known that the spanning trees of a planar graph G are in canonical bijection with those of its planar dual G*, and furthermore that the sandpile groups of G and G* are isomorphic. Thus, one can ask: are the two rotor-routing actions, of the sandpile group of G on its spanning trees, and of the sandpile group of G* on its spanning trees, compatible under plane duality? In this paper, we give an affirmative answer to this question, which had been conjectured by Baker.Comment: 13 pages, 9 figure

    Critical Ising model and spanning trees partition functions

    Full text link
    We prove that the squared partition function of the two-dimensional critical Ising model defined on a finite, isoradial graph G=(V,E)G=(V,E), is equal to 2∣V∣2^{|V|} times the partition function of spanning trees of the graph Gˉ\bar{G}, where Gˉ\bar{G} is the graph GG extended along the boundary; edges of GG are assigned Kenyon's [Ken02] critical weights, and boundary edges of Gˉ\bar{G} have specific weights. The proof is an explicit construction, providing a new relation on the level of configurations between two classical, critical models of statistical mechanics.Comment: 38 pages, 26 figure

    The looping rate and sandpile density of planar graphs

    Full text link
    We give a simple formula for the looping rate of loop-erased random walk on a finite planar graph. The looping rate is closely related to the expected amount of sand in a recurrent sandpile on the graph. The looping rate formula is well-suited to taking limits where the graph tends to an infinite lattice, and we use it to give an elementary derivation of the (previously computed) looping rate and sandpile densities of the square, triangular, and honeycomb lattices, and compute (for the first time) the looping rate and sandpile densities of many other lattices, such as the kagome lattice, the dice lattice, and the truncated hexagonal lattice (for which the values are all rational), and the square-octagon lattice (for which it is transcendental)
    • …
    corecore