70,944 research outputs found

    Coloring decompositions of complete geometric graphs

    Get PDF
    A decomposition of a non-empty simple graph GG is a pair [G,P][G,P], such that PP is a set of non-empty induced subgraphs of GG, and every edge of GG belongs to exactly one subgraph in PP. The chromatic index χ′([G,P])\chi'([G,P]) of a decomposition [G,P][G,P] is the smallest number kk for which there exists a kk-coloring of the elements of PP in such a way that: for every element of PP all of its edges have the same color, and if two members of PP share at least one vertex, then they have different colors. A long standing conjecture of Erd\H{o}s-Faber-Lov\'asz states that every decomposition [Kn,P][K_n,P] of the complete graph KnK_n satisfies χ′([Kn,P])≤n\chi'([K_n,P])\leq n. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case in which the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.Comment: 18 pages, 5 figure

    Searching edges in the overlap of two plane graphs

    Full text link
    Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains one of which is convex in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n) time and O(n+m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n axis-aligned rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure

    Coloring half-planes and bottomless rectangles

    Get PDF
    We prove lower and upper bounds for the chromatic number of certain hypergraphs defined by geometric regions. This problem has close relations to conflict-free colorings. One of the most interesting type of regions to consider for this problem is that of the axis-parallel rectangles. We completely solve the problem for a special case of them, for bottomless rectangles. We also give an almost complete answer for half-planes and pose several open problems. Moreover we give efficient coloring algorithms

    Statistical properties of filaments in weak gravitational lensing

    Full text link
    We study weak lensing properties of filaments that connect clusters of galaxies through large cosmological NN-body simulations. We select 4639 halo pairs with masses higher than 1014h−1M⊙10^{14}h^{-1}\mathrm{M}_\odot from the simulations and investigate dark matter distributions between two haloes with ray-tracing simulations. In order to classify filament candidates, we estimate convergence profiles and perform profile fitting. We find that matter distributions between haloes can be classified in a plane of fitting parameters, which allow us to select straight filaments from the ray-tracing simulations. We also investigate statistical properties of these filaments, finding them to be consistent with previous studies. We find that 35%35\% of halo pairs possess straight filaments, 4%4\% of which can directly be detected at S/N≥2S/N\geq2 with weak lensing. Furthermore, we study statistical properties of haloes at the edges of filaments. We find that haloes are preferentially elongated along filamentary structures and are less massive with increasing filament masses. However, the dependence of these halo properties on masses of straight filaments is very weak.Comment: 14 pages, 12 figures, 3 tables. Accepted for publication in MNRA

    STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures

    Full text link
    Superperiodic patterns near a step edge were observed by STM on several-layer-thick graphite sheets on a highly oriented pyrolitic graphite substrate, where a dislocation network is generated at the interface between the graphite overlayer and the substrate. Triangular- and rhombic-shaped periodic patterns whose periodicities are around 100 nm were observed on the upper terrace near the step edge. In contrast, only outlines of the patterns similar to those on the upper terrace were observed on the lower terrace. On the upper terrace, their geometrical patterns gradually disappeared and became similar to those on the lower terrace without any changes of their periodicity in increasing a bias voltage. By assuming a periodic scattering potential at the interface due to dislocations, the varying corrugation amplitudes of the patterns can be understood as changes in LDOS as a result of the beat of perturbed and unperturbed waves, i.e. the interference in an overlayer. The observed changes in the image depending on an overlayer height and a bias voltage can be explained by the electronic wave interference in the ultra-thin overlayer distorted under the influence of dislocation-network structures.Comment: 8 pages; 6 figures; Paper which a part of cond-mat/0311068 is disscussed in detai

    Morsifications and mutations

    Full text link
    We describe and investigate a connection between the topology of isolated singularities of plane curves and the mutation equivalence, in the sense of cluster algebra theory, of the quivers associated with their morsifications.Comment: Major revision and expansion. Several new results. 80 pages, 66 figure
    • …
    corecore