5 research outputs found

    ICML - On the Number of Linear Regions of Convolutional Neural Networks

    Get PDF
    One fundamental problem in deep learning is understanding the outstanding performance of deep Neural Networks (NNs) in practice. One explanation for the superiority of NNs is that they can realize a large class of complicated functions, i.e., they have powerful expressivity. The expressivity of a ReLU NN can be quantified by the maximal number of linear regions it can separate its input space into. In this paper, we provide several mathematical results needed for studying the linear regions of CNNs, and use them to derive the maximal and average numbers of linear regions for one-layer ReLU CNNs. Furthermore, we obtain upper and lower bounds for the number of linear regions of multi-layer ReLU CNNs. Our results suggest that deeper CNNs have more powerful expressivity than their shallow counterparts, while CNNs have more expressivity than fully-connected NNs per parameter.Comment: International Conference on Machine Learning (ICML) 202

    Theoretical Deep Learning

    Get PDF
    Deep learning has long been criticised as a black-box model for lacking sound theoretical explanation. During the PhD course, I explore and establish theoretical foundations for deep learning. In this thesis, I present my contributions positioned upon existing literature: (1) analysing the generalizability of the neural networks with residual connections via complexity and capacity-based hypothesis complexity measures; (2) modeling stochastic gradient descent (SGD) by stochastic differential equations (SDEs) and their dynamics, and further characterizing the generalizability of deep learning; (3) understanding the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems, which sheds light in reconciling the over-representation and excellent generalizability of deep learning; and (4) discovering the interplay between generalization, privacy preservation, and adversarial robustness, which have seen rising concerns in deep learning deployment
    corecore