18 research outputs found

    On the Number of Hamilton Cycles in Sparse Random Graphs

    Full text link

    Counting Hamilton cycles in sparse random directed graphs

    Full text link
    Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p(logn+ω(1))/np\ge(\log n+\omega(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))nn!(p(1+o(1)))^{n}. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))nn!(\log n/n(1+o(1)))^{n} directed Hamilton cycles

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1o(1))n2/2n^{(1-o(1))n^2/2}

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio
    corecore