408 research outputs found

    Maximum Entropy Vector Kernels for MIMO system identification

    Full text link
    Recent contributions have framed linear system identification as a nonparametric regularized inverse problem. Relying on â„“2\ell_2-type regularization which accounts for the stability and smoothness of the impulse response to be estimated, these approaches have been shown to be competitive w.r.t classical parametric methods. In this paper, adopting Maximum Entropy arguments, we derive a new â„“2\ell_2 penalty deriving from a vector-valued kernel; to do so we exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by the McMillan degree, stability and smoothness of the identified models. As a special case we recover the nuclear norm penalty on the squared block Hankel matrix. In contrast with previous literature on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters, which are iteratively updated through marginal likelihood maximization; constraining the structure of the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our estimator. To optimize the marginal likelihood we adapt a Scaled Gradient Projection (SGP) algorithm which is proved to be significantly computationally cheaper than other first and second order off-the-shelf optimization methods. The paper also contains an extensive comparison with many state-of-the-art methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure

    Subspace System Identification via Weighted Nuclear Norm Optimization

    Full text link
    We present a subspace system identification method based on weighted nuclear norm approximation. The weight matrices used in the nuclear norm minimization are the same weights as used in standard subspace identification methods. We show that the inclusion of the weights improves the performance in terms of fit on validation data. As a second benefit, the weights reduce the size of the optimization problems that need to be solved. Experimental results from randomly generated examples as well as from the Daisy benchmark collection are reported. The key to an efficient implementation is the use of the alternating direction method of multipliers to solve the optimization problem.Comment: Submitted to IEEE Conference on Decision and Contro

    Rank-Sparsity Incoherence for Matrix Decomposition

    Get PDF
    Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this paper we consider a convex optimization formulation to splitting the specified matrix into its components, by minimizing a linear combination of the â„“1\ell_1 norm and the nuclear norm of the components. We develop a notion of \emph{rank-sparsity incoherence}, expressed as an uncertainty principle between the sparsity pattern of a matrix and its row and column spaces, and use it to characterize both fundamental identifiability as well as (deterministic) sufficient conditions for exact recovery. Our analysis is geometric in nature, with the tangent spaces to the algebraic varieties of sparse and low-rank matrices playing a prominent role. When the sparse and low-rank matrices are drawn from certain natural random ensembles, we show that the sufficient conditions for exact recovery are satisfied with high probability. We conclude with simulation results on synthetic matrix decomposition problems

    Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

    Full text link
    The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization
    • …
    corecore