103,357 research outputs found

    MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm

    Get PDF
    The Extension Of Estimation Of Distribution Algorithms (Edas) To The Multiobjective Domain Has Led To Multi-Objective Optimization Edas (Moedas). Most Moedas Have Limited Themselves To Porting Single-Objective Edas To The Multi-Objective Domain. Although Moedas Have Proved To Be A Valid Approach, The Last Point Is An Obstacle To The Achievement Of A Significant Improvement Regarding "Standard" Multi-Objective Optimization Evolutionary Algorithms. Adapting The Model-Building Algorithm Is One Way To Achieve A Substantial Advance. Most Model-Building Schemes Used So Far By Edas Employ Off-The-Shelf Machine Learning Methods. However, The Model-Building Problem Has Particular Requirements That Those Methods Do Not Meet And Even Evade. The Focus Of This Paper Is On The Model- Building Issue And How It Has Not Been Properly Understood And Addressed By Most Moedas. We Delve Down Into The Roots Of This Matter And Hypothesize About Its Causes. To Gain A Deeper Understanding Of The Subject We Propose A Novel Algorithm Intended To Overcome The Draw-Backs Of Current Moedas. This New Algorithm Is The Multi-Objective Neural Estimation Of Distribution Algorithm (Moneda). Moneda Uses A Modified Growing Neural Gas Network For Model-Building (Mb-Gng). Mb-Gng Is A Custom-Made Clustering Algorithm That Meets The Above Demands. Thanks To Its Custom-Made Model-Building Algorithm, The Preservation Of Elite Individuals And Its Individual Replacement Scheme, Moneda Is Capable Of Scalably Solving Continuous Multi-Objective Optimization Problems. It Performs Better Than Similar Algorithms In Terms Of A Set Of Quality Indicators And Computational Resource Requirements.This work has been funded in part by projects CNPq BJT 407851/2012-7, FAPERJ APQ1 211.451/2015, MINECO TEC2014-57022-C2-2-R and TEC2012-37832-C02-01

    Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

    Get PDF
    Recently, increasing works have proposed to drive evolutionary algorithms using machine learning models. Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality. To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables. Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table
    corecore