1,700 research outputs found

    Capacity Results for Block-Stationary Gaussian Fading Channels with a Peak Power Constraint

    Full text link
    We consider a peak-power-limited single-antenna block-stationary Gaussian fading channel where neither the transmitter nor the receiver knows the channel state information, but both know the channel statistics. This model subsumes most previously studied Gaussian fading models. We first compute the asymptotic channel capacity in the high SNR regime and show that the behavior of channel capacity depends critically on the channel model. For the special case where the fading process is symbol-by-symbol stationary, we also reveal a fundamental interplay between the codeword length, communication rate, and decoding error probability. Specifically, we show that the codeword length must scale with SNR in order to guarantee that the communication rate can grow logarithmically with SNR with bounded decoding error probability, and we find a necessary condition for the growth rate of the codeword length. We also derive an expression for the capacity per unit energy. Furthermore, we show that the capacity per unit energy is achievable using temporal ON-OFF signaling with optimally allocated ON symbols, where the optimal ON-symbol allocation scheme may depend on the peak power constraint.Comment: Submitted to the IEEE Transactions on Information Theor

    The Noncoherent Rician Fading Channel -- Part I : Structure of the Capacity-Achieving Input

    Full text link
    Transmission of information over a discrete-time memoryless Rician fading channel is considered where neither the receiver nor the transmitter knows the fading coefficients. First the structure of the capacity-achieving input signals is investigated when the input is constrained to have limited peakedness by imposing either a fourth moment or a peak constraint. When the input is subject to second and fourth moment limitations, it is shown that the capacity-achieving input amplitude distribution is discrete with a finite number of mass points in the low-power regime. A similar discrete structure for the optimal amplitude is proven over the entire SNR range when there is only a peak power constraint. The Rician fading with phase-noise channel model, where there is phase uncertainty in the specular component, is analyzed. For this model it is shown that, with only an average power constraint, the capacity-achieving input amplitude is discrete with a finite number of levels. For the classical average power limited Rician fading channel, it is proven that the optimal input amplitude distribution has bounded support.Comment: To appear in the IEEE Transactions on Wireless Communication

    Low SNR Capacity of Noncoherent Fading Channels

    Full text link
    Discrete-time Rayleigh fading single-input single-output (SISO) and multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter or the receiver. The fading is assumed to be stationary and correlated in time, but independent from antenna to antenna. Peak-power and average-power constraints are imposed on the transmit antennas. For MIMO channels, these constraints are either imposed on the sum over antennas, or on each individual antenna. For SISO channels and MIMO channels with sum power constraints, the asymptotic capacity as the peak signal-to-noise ratio tends to zero is identified; for MIMO channels with individual power constraints, this asymptotic capacity is obtained for a class of channels called transmit separable channels. The results for MIMO channels with individual power constraints are carried over to SISO channels with delay spread (i.e. frequency selective fading).Comment: submitted to IEEE I
    • …
    corecore