1,069 research outputs found

    Upset Dynamics of an Airliner Model: A Nonlinear Bifurcation Analysis

    Get PDF

    The Structure of Global Attractors for Dissipative Zakharov Systems with Forcing on the Torus

    Get PDF
    The Zakharov system was originally proposed to study the propagation of Langmuir waves in an ionized plasma. In this paper, motivated by earlier work of the first and third authors, we numerically and analytically investigate the dynamics of the dissipative Zakharov system on the torus in 1 dimension. We find an interesting family of stable periodic orbits and fixed points, and explore bifurcations of those points as we take weaker and weaker dissipation.Comment: 16 pages, 7 figure

    Symmetry-breaking transitions in networks of nonlinear circuit elements

    Full text link
    We investigate a nonlinear circuit consisting of N tunnel diodes in series, which shows close similarities to a semiconductor superlattice or to a neural network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like system. The tunnel diodes are coupled globally through a load resistor. We find complex bifurcation scenarios with symmetry-breaking transitions that generate multiple fixed points off the synchronization manifold. We show that multiply degenerate zero-eigenvalue bifurcations occur, which lead to multistable current branches, and that these bifurcations are also degenerate with a Hopf bifurcation. These predicted scenarios of multiple branches and degenerate bifurcations are also found experimentally.Comment: 32 pages, 11 figures, 7 movies available as ancillary file

    Endogenous driving and synchronization in cardiac and uterine virtual tissues: bifurcations and local coupling

    Get PDF
    Cardiac and uterine muscle cells and tissue can be either autorhythmic or excitable. These behaviours exchange stability at bifurcations produced by changes in parameters, which if spatially localized can produce an ectopic pacemaking focus. The effects of these parameters on cell dynamics have been identified and quantified using continuation algorithms and by numerical solutions of virtual cells. The ability of a compact pacemaker to drive the surrounding excitable tissues depends on both the size of the pacemaker and the strength of electrotonic coupling between cells within, between, and outside the pacemaking region. We investigate an ectopic pacemaker surrounded by normal excitable tissue. Cell–cell coupling is simulated by the diffusion coefficient for voltage. For uniformly coupled tissues, the behaviour of the hybrid tissue can take one of the three forms: (i) the surrounding tissue electrotonically suppresses the pacemaker; (ii) depressed rate oscillatory activity in the pacemaker but no propagation; and (iii) pacemaker driving propagations into the excitable region. However, real tissues are heterogeneous with spatial changes in cell–cell coupling. In the gravid uterus during early pregnancy, cells are weakly coupled, with the cell–cell coupling increasing during late pregnancy, allowing synchronous contractions during labour. These effects are investigated for a caricature uterine tissue by allowing both excitability and diffusion coefficient to vary stochastically with space, and for cardiac tissues by spatial gradients in the diffusion coefficient
    corecore