429 research outputs found

    Natural Compression for Distributed Deep Learning

    Full text link
    Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression (NC)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a "natural" way by ignoring the mantissa. We show that compared to no compression, NC increases the second moment of the compressed vector by not more than the tiny factor \nicefrac{9}{8}, which means that the effect of NC on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by NC are substantial, leading to {\em 33-4×4\times improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize NC to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.Comment: 8 pages, 20 pages of Appendix, 6 Tables, 14 Figure

    Stochastic Training of Neural Networks via Successive Convex Approximations

    Full text link
    This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The basic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximations, which are both accurate and simple to optimize. Differently from similar ideas (e.g., quasi-Newton algorithms), the approximations can be constructed using only first-order information of the neural network function, in a stochastic fashion, while exploiting the overall structure of the learning problem for a faster convergence. We discuss several use cases, based on different choices for the loss function (e.g., squared loss and cross-entropy loss), and for the regularization of the NN's weights. We experiment on several medium-sized benchmark problems, and on a large-scale dataset involving simulated physical data. The results show how the algorithm outperforms state-of-the-art techniques, providing faster convergence to a better minimum. Additionally, we show how the algorithm can be easily parallelized over multiple computational units without hindering its performance. In particular, each computational unit can optimize a tailored surrogate function defined on a randomly assigned subset of the input variables, whose dimension can be selected depending entirely on the available computational power.Comment: Preprint submitted to IEEE Transactions on Neural Networks and Learning System
    • …
    corecore