148 research outputs found

    Complexity of equivalence relations and preorders from computability theory

    Full text link
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relations R,SR, S, a componentwise reducibility is defined by R\le S \iff \ex f \, \forall x, y \, [xRy \lra f(x) Sf(y)]. Here ff is taken from a suitable class of effective functions. For us the relations will be on natural numbers, and ff must be computable. We show that there is a Π1\Pi_1-complete equivalence relation, but no Πk\Pi k-complete for k≥2k \ge 2. We show that Σk\Sigma k preorders arising naturally in the above-mentioned areas are Σk\Sigma k-complete. This includes polynomial time mm-reducibility on exponential time sets, which is Σ2\Sigma 2, almost inclusion on r.e.\ sets, which is Σ3\Sigma 3, and Turing reducibility on r.e.\ sets, which is Σ4\Sigma 4.Comment: To appear in J. Symb. Logi

    Total Representations

    Full text link
    Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.Comment: 30 page

    Lipschitz and uniformly continuous reducibilities on ultrametric Polish spaces

    Full text link
    We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.Comment: 37 pages, 2 figures, revised version, accepted for publication in the Festschrift that will be published on the occasion of Victor Selivanov's 60th birthday by Ontos-Verlag. A mistake has been corrected in Section

    Survey on the Tukey theory of ultrafilters

    Full text link
    This article surveys results regarding the Tukey theory of ultrafilters on countable base sets. The driving forces for this investigation are Isbell's Problem and the question of how closely related the Rudin-Keisler and Tukey reducibilities are. We review work on the possible structures of cofinal types and conditions which guarantee that an ultrafilter is below the Tukey maximum. The known canonical forms for cofinal maps on ultrafilters are reviewed, as well as their applications to finding which structures embed into the Tukey types of ultrafilters. With the addition of some Ramsey theory, fine analyses of the structures at the bottom of the Tukey hierarchy are made.Comment: 25 page

    On the structure of finite level and \omega-decomposable Borel functions

    Full text link
    We give a full description of the structure under inclusion of all finite level Borel classes of functions, and provide an elementary proof of the well-known fact that not every Borel function can be written as a countable union of \Sigma^0_\alpha-measurable functions (for every fixed 1 \leq \alpha < \omega_1). Moreover, we present some results concerning those Borel functions which are \omega-decomposable into continuous functions (also called countably continuous functions in the literature): such results should be viewed as a contribution towards the goal of generalizing a remarkable theorem of Jayne and Rogers to all finite levels, and in fact they allow us to prove some restricted forms of such generalizations. We also analyze finite level Borel functions in terms of composition of simpler functions, and we finally present an application to Banach space theory.Comment: 31 pages, 2 figures, revised version, accepted for publication on the Journal of Symbolic Logi

    On the isomorphism conjecture for 2DFA reductions

    Get PDF
    The degree structure of complete sets under 2DFA reductions is investigated. It is shown that, for any class C that is closed under log-lin reductions: All complete sets for the class C under 2DFA reductions are also complete under one-one, length-increasing 2DFA reductions and are first-order isomorphic. The 2DFA-isomorphism conjecture is false, i.e., the complete sets under 2DFA reductions are not isomorphic to each other via 2DFA reductions

    For completeness, sublogarithmic space is no space

    Get PDF
    It is shown that for any class C closed under linear-time reductions, the complete sets for C under sublogarithmic reductions are also complete under 2DFA reductions, and thus are isomorphic under first-order reductions
    • …
    corecore