4,582 research outputs found

    Quantization Bounds on Grassmann Manifolds and Applications to MIMO Communications

    Full text link
    This paper considers the quantization problem on the Grassmann manifold \mathcal{G}_{n,p}, the set of all p-dimensional planes (through the origin) in the n-dimensional Euclidean space. The chief result is a closed-form formula for the volume of a metric ball in the Grassmann manifold when the radius is sufficiently small. This volume formula holds for Grassmann manifolds with arbitrary dimension n and p, while previous results pertained only to p=1, or a fixed p with asymptotically large n. Based on this result, several quantization bounds are derived for sphere packing and rate distortion tradeoff. We establish asymptotically equivalent lower and upper bounds for the rate distortion tradeoff. Since the upper bound is derived by constructing random codes, this result implies that the random codes are asymptotically optimal. The above results are also extended to the more general case, in which \mathcal{G}_{n,q} is quantized through a code in \mathcal{G}_{n,p}, where p and q are not necessarily the same. Finally, we discuss some applications of the derived results to multi-antenna communication systems.Comment: 26 pages, 7 figures, submitted to IEEE Transactions on Information Theory in Aug, 200

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio
    • …
    corecore